Force due to gravity inside planet

AI Thread Summary
The discussion centers on the gravitational force inside a spherical planet with varying density. It is established that the maximum gravitational force occurs at the radius r = R/2, contrary to the expectation that it would be at the planet's surface (r = R). The calculations show that the force is proportional to r in the inner region and varies differently in the outer region. The participants confirm that the force at r = R/2 exceeds that at r = R, supporting the initial claim. The shell theorem is referenced to explain the gravitational effects in the hollowed-out region.
Undoubtedly0
Messages
98
Reaction score
0
Here is a simple problem in classical gravitation.

Consider a spherical planet of radius R, and let the radial coordinate r originate from the plant's center. If the density of the planet is ρ from 0 ≤ r < R/2 and ρ/3 from R/2 < r < R, then my work tells me that the maximum force due to gravity inside the planet is at r = R/2, not at r = R as one might expect.

0\leq r\leq R/2,\qquad F_G = \frac{Gm\left(\rho \frac{4}{3}\pi r^3\right)}{r^2} = \frac{4\pi}{3}Gm\rho r \\<br /> R/2 \leq r \leq R,\qquad F_G = \frac{Gm\left[ \rho\frac{4\pi}{3}\left(\frac{R}{2} \right)^3 + \frac{\rho}{3}\frac{4\pi}{3} \left( r^3 - \left(\frac{R}{2} \right)^3 \right) \right]}{r^2} = \frac{4\pi}{3}\frac{Gm\rho}{r^2}\left[ \left(\frac{R}{2} \right)^3 + \frac{1}{3}r^3 - \frac{1}{3}\left(\frac{R}{2} \right)^3 \right]

My work is above. Is this be correct, that the maximum force due to gravity would be at r = R/2? Thanks for your time!
 
Physics news on Phys.org
Neglecting 4pi/3 Gmρ as prefactor:

In the inner part: ##F \propto r##
In the outer part: ##F \propto (\frac{R}{2})^3/r^2 + 1/3 (r-\frac{R}{2}) = \frac{1}{r^2} ((\frac{R}{2})^3+\frac{1}{3}r^3-\frac{1}{3}(\frac{R}{2})r^2)##

I get a different third term for the force.

##\frac{dF}{dr}=-\frac{R^3}{4r^3} + \frac{1}{3}## which is 0 at ##4r^3=3R^3##, it has a minimum in the less dense region.

F(R/2) > F(R), so I can confirm your result.
 
Thanks mfb. Regarding our difference, I think your third term might be mistaken. If we hollow out the planet from 0 ≤ r < R/2, then the force due to gravity in the domain R/2 ≤ r ≤ R is

F_G = \frac{Gm\frac{\rho}{3}}{r^2}\left[ \frac{4\pi}{3}r^3 - \frac{4\pi}{3}\left(\frac{R}{2}\right)^3\right]

By the shell theorem, it as if all the volume enclosed is contained in a point at the center. Do you agree?
 
Oh, you are right.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top