Fourier Transform: Decompose Vector Function

LocationX
Messages
141
Reaction score
0
For some reason I can't post everything at once... gives me a "Database error" so I will post in parts...

A vector function can be decomposed to form a curl free and divergence
free parts:

\vec{f}(\vec{r})=\vec{f_{\parallel}}(\vec{r'})+\vec{f_{\perp}}(\vec{r'})

where

\vec{f_{\parallel}}(\vec{r'}) = - \vec{\nabla} \left( \frac{1}{4 \pi} \int d^3 r' \frac{\vec{\nabla'} \cdot \vec{f}(\vec{r'})}{|\vec{r}-\vec{r'}|} \right)

and

\vec{f_{\perp}}(\vec{r'}) = \vec{\nabla} \times \left( \frac{1}{4 \pi} \int d^3 r' \frac{\vec{\nabla'} \times \vec{f}(\vev{r'})}{|\vec{r}-\vec{r'}|} \right)
 
Physics news on Phys.org
I am trying to take the Fourier transform of \vec{f_{\parallel}}(\vec{r'}) and \vec{f_{\perp}}(\vec{r})I am starting at \vec{f_{\parallel}}(\vec{r'}). We know that the Fourier transform is given by:

\vec{f}(\vec{k}) = \int_{-\infty}^{\infty} d^3r e^{- i \vec{k} \cdot \vec{r}} \vec{f}(\vec{r})

\vec{f}(\vec{r}) = \frac{1}{(2 \pi)^3} \int_{-\infty}^{\infty} d^3k e^{- i \vec{k} \cdot \vec{r}} \vec{f}(\vec{k})

I'm not exactly sure where to begin. If I just plug and chug , we'd have:

\vec{f}(\vec{k}) = \int_{-\infty}^{\infty} d^3r e^{- i \vec{k} \cdot \vec{r}} \vec{f}(\vec{r})

\vec{f}(\vec{k}) = \int_{-\infty}^{\infty} e^{- i \vec{k} \cdot \vec{r}} - \vec{\nabla} \left( \frac{1}{4 \pi} \int \frac{\vec{\nabla'} \cdot \vec{f}(\vec{r'})}{|\vec{r}-\vec{r'}|} d^3 r' \right) d^3rI just do not see a simple way of tacking this problem. Any thoughts would be appreciated.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top