Fourier Transfrom and expectation value of momemtum operator

black_hole
Messages
71
Reaction score
0

Homework Statement


Using <\hat{p}n> = ∫dxψ*(x)(\hat{p})nψ(x) and \hat{p} = -ihbar∂x and the definition of the Fourier transform

show that <\hat{p}> = ∫dk|\tilde{ψ}(k)|2hbar*k

2. The attempt at a solution

Let n = 1 and substitute the expression for the momentum operator. Transform the wavefunction and its conjugate. Take out all constants.

\hat{p} = -ihbar/2pi∫dx∫dkeikx\tilde{ψ}*(k)∂xdkeikx\tilde{ψ}

Here I'm stuck. I tired applying the ∂x operator onto the eikx next to it. That cancels the negative sign, the i, and brings down a k. I thought I could change the the transform of the wavefunction and its conjugate into its norm squared and then I'd be left with ∫dxe2ikx but that integral does not give me 2pi.

have a made a mistake?
 
Last edited by a moderator:
Physics news on Phys.org
black_hole said:
Here I'm stuck. I tired applying the ∂x operator onto the eikx next to it. That cancels the negative sign, the i, and brings down a k. I thought I could change the the transform of the wavefunction and its conjugate into its norm squared and then I'd be left with ∫dxe2ikx but that integral does not give me 2pi.

have a made a mistake?

You need to be more careful. The two Fourier transformations you do don't have the same index: you integrate over two different k's.
 
Um, ok. You're probably right. But I'm not sure I see what to do ...
 
You will need an identity concerning Dirac delta functions: \delta(k+k&#039;) = \frac{1}{2\pi} \int e^{ix(k+k&#039;)} dx
 
black_hole said:
Um, ok. You're probably right. But I'm not sure I see what to do ...
What clamtrox is saying is that you should start off with
$$\langle \hat{p} \rangle = -\frac{i\hbar}{2\pi}\int dx \left[\int dk\,\tilde{\psi}(k)e^{ikx}\right]^* \frac{\partial}{\partial x} \left[\int dk'\,\tilde{\psi}(k')e^{ik'x}\right].$$ Do what you tried the first time, but this time you'll get something that looks like the identity clamtrox provided above, which will allow you to perform one of the integrals, leaving you with the result you want.
 
Ok Thanks guys! That makes more sense
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top