Friction - 3 Blocks and a Pulley

Click For Summary

Homework Help Overview

The discussion revolves around a physics problem involving three blocks and a pulley, focusing on the forces acting on Block 1 due to Block 2, particularly the role of static friction and the normal force in different directions. The participants explore the implications of Newton's laws in this context.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants examine the relationship between static friction and the normal force, questioning how these forces interact when Block 1 is accelerating. There is a discussion about the conditions under which static friction acts and its maximum value. Some participants also reflect on the difference between static and kinetic friction.

Discussion Status

The discussion has evolved with participants revisiting their initial reasoning about static friction and its dependence on the applied forces. Some have clarified their understanding of how static friction can vary up to a maximum value, while others are still questioning the assumptions made regarding the forces acting on Block 1.

Contextual Notes

Participants are considering the effects of different applied forces on Block 1 and how these relate to the static friction experienced. There is an ongoing exploration of the conditions under which Block 1 remains at rest or begins to move, highlighting the complexities of frictional forces in this scenario.

FredericChopin
Messages
101
Reaction score
0

Homework Statement


http://imgur.com/C0XYEKw

Homework Equations


Fnet = m*a
FG = m*g
fstatic = μ*N

The Attempt at a Solution


If both Block 1 and Block 2 have acceleration a in the x-direction and have an acceleration of 0 in the y-direction, then the force of static friction on Block 1 due to Block 2 doesn't seem to depend at all on what Block 2 is doing. This is because the normal force on Block 1 due to Block 2 is still the same as it is at rest and the force of static friction on Block 1 due to Block 2 is the only force acting in the x-direction on Block 1.

I tried this by considering only Block 1 as a system.

In the y-direction, the forces acting on Block 1 are the normal force on Block 1 due to Block 2, N12, and the gravitational force on Block 1 due to the Earth, F1E. The acceleration, ay, is equal to 0.

Thus:

Σ Fnet,y = 0 = N12 - F1E = N12 - m1*g

Thus:

N12 = m1*g

In the x-direction, the only force acting on Block 1 is the force of static friction, which is acting in the right, positive x-direction. The acceleration, ax, is equal to a.

Thus:

Σ Fnet, x = m1*a = fstatic = μ*N12 = μ*m1*g

Thus the force and direction of the force of static friction on Block 1 due to Block 2 is:

fstatic = μ*m1*g

This, however, is the wrong answer.

I don't understand why though. Where am I going wrong?

Thank you.
 
Physics news on Phys.org
FredericChopin said:

Homework Statement


http://imgur.com/C0XYEKw

Homework Equations


Fnet = m*a
FG = m*g
fstatic = μ*N

The Attempt at a Solution


If both Block 1 and Block 2 have acceleration a in the x-direction and have an acceleration of 0 in the y-direction, then the force of static friction on Block 1 due to Block 2 doesn't seem to depend at all on what Block 2 is doing. This is because the normal force on Block 1 due to Block 2 is still the same as it is at rest and the force of static friction on Block 1 due to Block 2 is the only force acting in the x-direction on Block 1.

I tried this by considering only Block 1 as a system.

In the y-direction, the forces acting on Block 1 are the normal force on Block 1 due to Block 2, N12, and the gravitational force on Block 1 due to the Earth, F1E. The acceleration, ay, is equal to 0.

Thus:

Σ Fnet,y = 0 = N12 - F1E = N12 - m1*g

Thus:

N12 = m1*g

In the x-direction, the only force acting on Block 1 is the force of static friction, which is acting in the right, positive x-direction. The acceleration, ax, is equal to a.

Thus:

Σ Fnet, x = m1*a = fstatic = μ*N12 = μ*m1*g

Thus the force and direction of the force of static friction on Block 1 due to Block 2 is:

fstatic = μ*m1*g

This, however, is the wrong answer.

I don't understand why though. Where am I going wrong?

Thank you.

What is the difference between kinetic and static friction?
Imagine that you have a block in rest on a table. The mass of the block is 2 kg, the coefficient of static friction is μs=0.5.

You push the block with force F=1N force. Will the block move? What is the force of friction?
You push the block with F=9 N force. Will the block move? What is the force of friction now?
 
O.K., I realized I grossly overcomplicated things.

Since the force of static friction on Block 1 due to Block 2 is the only force in the x-direction acting on Block 1, and Block 1 has acceleration a, then Newton's Second Law states that:

∑ Fx = m1*a = fs12

Thus, the force of static friction on Block 1 due to Block 2 is:

fs12 = m1*a

EDIT: Responding to your original question, the force of static friction can take on any value up to a maximum value of μ*m1*g. So, when an applied force of 1 N is acting on Block 1, the force of static friction is 1 N in the opposite direction. As a result, the net force is 0 N and Block 1 does not move. If an applied force of 9 N is acting on Block 1, the force of static friction is at its maximum 9 N (if g = 10 m/s2) in the opposite direction. As a result, Block 1 travels at a constant velocity in the direction of applied force.
 
Last edited:
FredericChopin said:
O.K., I realized I grossly overcomplicated things.

Since the force of static friction on Block 1 due to Block 2 is the only force in the x-direction acting on Block 1, and Block 1 has acceleration a, then Newton's Second Law states that:

∑ Fx = m1*a = fs12

Thus, the force of static friction on Block 1 due to Block 2 is:

fs12 = m1*a
That is correct now.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
61
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
2K
Replies
3
Views
718
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
21
Views
1K
Replies
16
Views
3K
Replies
23
Views
2K