genxium
- 137
- 2
Homework Statement
This problem came when I was learning the Poisson's equation (refer to http://farside.ph.utexas.edu/teaching/em/lectures/node31.html). when it came to the step to find the Green's function G which satisfies \nabla^2 \cdot G(\textbf{r}, \textbf{r}') = \delta(\textbf{r}-\textbf{r}') with |G| \rightarrow 0 when |\textbf{r}| \rightarrow 0, the tutorial I refer to simply yields G(\textbf{r}, \textbf{r}') = -\frac{1}{4\pi}\frac{1}{|\textbf{r} - \textbf{r}'|}.
I understand that \int_{V} \nabla^2 \cdot \frac{1}{|\textbf{r} - \textbf{r}'|} dV= \int_{S=\partial V} \nabla \cdot \frac{1}{|\textbf{r}-\textbf{r}'|} \cdot d\textbf{S} = \int_{S=\partial V} -\frac{\textbf{r}-\textbf{r}'}{|\textbf{r}-\textbf{r}'|^3} \cdot d\textbf{S} = -4\pi, by assuming that V is a unit sphere located at \textbf{r}'. Thus G(\textbf{r}, \textbf{r}') = -\frac{1}{4\pi}\frac{1}{|\textbf{r} - \textbf{r}'|} COULD BE ONE SOLUTION to the equation, but what about proof of the uniqueness? Is this the only solution to the equation \nabla^2 \cdot G(\textbf{r}, \textbf{r}') = \delta(\textbf{r}-\textbf{r}') with |G| \rightarrow 0 when |\textbf{r}| \rightarrow 0?
Homework Equations
\textbf{r} = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k}
\textbf{r}' = x' \cdot \textbf{i} + y' \cdot \textbf{j} + z' \cdot \textbf{k}
\nabla = \frac{\partial}{\partial x} \cdot \textbf{i} + \frac{\partial}{\partial y} \cdot \textbf{j} + \frac{\partial}{\partial z} \cdot \textbf{k}
\delta(\textbf{r}) = \delta(x) \cdot \delta(y) \cdot \delta(z)
The Attempt at a Solution
Stated above.