Functions of Several Variables

kzang
Messages
1
Reaction score
0

Homework Statement



a.) Find the equations of the circles (if any) where the sphere (x-1)^2+(y+3)^2+(z-2)^2=4 intersects each coordinate plane.
b.)Find the points (if any) where this sphere intersects each coordinate axis.


Homework Equations





The Attempt at a Solution



a.) The sphere intersects the y-z plane so x=0. So the equation would be (y+3)^2+(z-2)^2=4?
b.) I'm not sure how to begin. Please help
 
Physics news on Phys.org
(x-1)^2+(y+3)^2+(z-2)^2=4

if x = 0, you get
(-1)^2+(y+3)^2+(z-2)^2=4

for b) on the z aaxis, y=x=0
 
For a) you should put x=0. Yes. But you didn't put x=0, you put x-1=0. For b) the x-axis is defined by y=0 and z=0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top