Fundamental theorem of calculus

mglaros
Messages
10
Reaction score
1

Homework Statement



Does the function F(x)=int(sin(1/t)dt,0,x) (integral of sin(1/t) with lower limit 0 to upper limit x) have a derivative at x=0?

Homework Equations


The Attempt at a Solution



I was thinking that F(x) shouldn't have a derivative at x=0 because the integrand isn't even continuous at 0. I tried making this more explicit through using the definition of the derivative along with the convention that F(0)=0 because sin(1/t) is bounded.

Any suggestions? Is my reasoning correct?

Homework Statement


Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
This one's kind of tricky. I had to think about it for a while. F(x) actually IS differentiable at 0. Try to prove this by showing -x^2<=|F(x)|<x^2. Big hint: integrate t*cos(1/t) by parts.
 
okay, once I have shown -x^2<=|F(x)|< x^2 then taking the limit as x tends to zero shows that F(x) is zero. My question now is how does this give us any information on the differentiability of F(x)? Is there something that I am missing?

Thank you for your time
 
|F&#039;(0)| = \lim_{h \rightarrow 0}\left|\frac{F(h) - F(0)}{h}\right| = \lim_{h \rightarrow 0}\frac{|F(h)|}{|h|} \leq \lim_{h \rightarrow 0}\frac{|h|^2}{|h|} = 0.

Hence F'(0) = 0.
 
wow, I don't see how I overlooked that haha. I really need to get some sleep. Thank you both for your help!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top