Thank you for the hint. This is my attempt at the proof which I mimic from that of the single variable case. Please check the rigour in the proof.
Let
\begin{equation*}
G(x) = \int_a^x F(x,t) dt.
\end{equation*}
Now
\begin{align*}
G(x+h) - G(x)
&= \int_a^{x+h} F(x+h,t) dt - \int_a^x F(x,t) dt \\[3mm]
&= \int_a^x F(x+h,t) dt + \int_x^{x+h} F(x+h,t) dt - \int_a^x F(x,t) dt \\[3mm]
&= \int_a^x F(x+h,t) dt - \int_a^x F(x,t) dt + \int_x^{x+h} F(x+h,t) dt \\[3mm]
&= \int_a^x \big [ F(x+h,t) - F(x,t) \big ] \; dt + h F(x+h,c) \\[3mm]
\end{align*}
for some c \in (x, x+h) by the mean value theorem for integrals. Therefore
\begin{equation*}
\frac{G(x+h) - G(x)}{h}
= \int_a^x \Big [ \frac{F(x+h,t) - F(x,t)}{h} \Big ] \; dt + F(x+h,c) \\[3mm]
\end{equation*}
and
\begin{align*}
G'(x) &= \lim_{h \to 0} \int_a^x \Big [ \frac{F(x+h,t) - F(x,t)}{h} \Big ] \; dt
+ \lim_{h \to 0} F(x+h,c) \\[3mm]
&= \int_a^x \frac{\partial}{\partial x} F(x,t) dt + F(x,x)
\end{align*}
since as h \to 0, x + h \to x and c \to x.
Now if F(x,t) = f(t) \int_t^x g(u) du. Then
\begin{equation*}
\frac{\partial}{\partial x} F(x,t) = f(t) g(x)
\end{equation*}
and
\begin{equation*}
G'(x) = \int_a^x f(t) g(x) dt + f(t) \int_x^x g(u) du = \int_a^x f(t) g(x) dt.
\end{equation*}