Gas Compression in piston and resulting oscillations

AI Thread Summary
The discussion centers on a physics problem involving a piston in a cylinder filled with an ideal gas at STP. The initial height of the gas column is 2.4 meters, and the final height after oscillations is calculated to be 2.12 meters. The user struggles with determining the frequency of oscillation, attempting to apply Hooke's law but is uncertain about the correct value for the spring constant (k). They express confusion over how to derive the restoring force and acceleration needed to solve for angular frequency (ω). The conversation highlights the importance of correctly identifying forces acting on the piston to find the appropriate equations for the second part of the problem.
kevlar94
Messages
10
Reaction score
0

Homework Statement


A cylinder is filled with .1 moles of an ideal gas at STP, and a piston of mass 1.4Kg seals the gas in the cylinder with a frictionless seal, as shown in the figure below. The trapped column of gas has an initial height 2.4. The piston and cylinder are surrounded by air, also at STP. The piston is released from rest and starts to fall. The motion of the piston ceases after a series of oscillations that ends with the piston and the trapped air in thermal equilibrium with
the surrounding air (which is at STP). (a) Find the final height h of the gas column.
(b) Suppose the piston is pushed down below the equilibrium position by a small amount and then released. Assuming that the temperature of the gas remains constant, find the frequency of the vibration.


Homework Equations


PV=nRT
P=F/A


The Attempt at a Solution


a) The initial height, H, can be described by PVi=nRT=PAH
The final height, h, can be described by the Ʃf=0, since its in equilibrium, = Pinternal*A-mg-P(A) where P is standard pressure.

Pin=mg/A +P = (nRT)/Vf using nRT from above the internal pressure can be written as
Pin=PAH/Ah = PH/h so

h= PH/[P+mg/PA] and using PAH=nRT for the original conditions we can solve for A=nRT/PH
so h= PH/[P+mg/P{nRT/PH}] using 300K for T and 1.01e5Pa for P I get h = 2.12m

h = [(2.4)]/[1+((1.4*9.8)/{(1.01e5)([(.1*8.3*300)/[(1.01e5)(2.4)]}]

How does that look?

b) This part confuses me. I am trying to use hookes law for a linear oscillator but I can not figure out the the k value.
F=kx
F=PA so k=PA/x
so ω=√[(PA/x)/m], I am using x=2.1 from part a but I am sure that is incorrect.
I get f=ω/(2pi) = [sqrt[((.00103)(1.01e5)/2.1)/2.4]]/(2pi) = .723Hz

What am I doing wrong for the second part. How should I solve for omega?

Thanks
 
Physics news on Phys.org
Does anybody have any idea how to approach the second problem?

I understand that I need a restoring force in order to find a k value for the system. Basically the sum of the forces will equal ma, not zero, and P'inA - PinA=ma but I am not sure how to go about actually solving for the the a value.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top