Gauss' Law: Net Electric Field of Two Spheres

UWGGEOL
Messages
5
Reaction score
0

Homework Statement


Two nonconducting spheres, of r1=3.0cm and r2=2.0cm, are placed of an x-axis. They have surface charge densities of +6.0mC/m2 and +4.0 mC/m2, respectively, on their outside surfaces. The center of sphere r1 is on the origin and the center of sphere r2 is 10 cm away. What is the net electric field at x=2.0 cm?



Homework Equations


E=kq/r2
Area=4pir2

The Attempt at a Solution


I noticed that x=2.0cm falls inside sphere r1 and that the Electric Field inside a sphere due to an outside charge equals 0. I think this is the answer but want to be sure.
 
Physics news on Phys.org
I do not think so! because they are non conducting spheres... so we can not ignore the effect of the second sphere, I guess! i will look it up more though...
 
The field inside a uniformly charged sphere is zero (the field of THIS sphere vanishes), but the field outside a uniformly charged sphere is the same as if all the charge was at its center (we can treat it like a point-charge on most regards)... You should get your answer easily!
 
Yeah I tried that before you told me and it was pretty easy and good to know the way i thought was right. I got -3.10x10^3 N/C because of the direction of the field
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top