GR Controversy: Proven Phenomena but Unproven Theory?

Click For Summary

Discussion Overview

The discussion revolves around the relationship between General Relativity (GR) and Quantum Mechanics (QM), particularly focusing on the experimental validation of GR through phenomena like gravitational lensing and the perceived controversies regarding its compatibility with quantum theories. Participants explore the implications of these theories in different scales and contexts, questioning how they can coexist or if they fundamentally conflict.

Discussion Character

  • Debate/contested
  • Conceptual clarification
  • Exploratory

Main Points Raised

  • Some participants note that while GR is well-supported by experimental evidence, such as gravitational lensing, it is not possible for any scientific theory to be 100% proven.
  • There is a suggestion that GR and QM approach physics from different scales, which complicates their integration.
  • Participants discuss the idea that GR requires continuous space, while QM introduces a limit at the Planck length, leading to questions about their compatibility.
  • Some argue that GR and QM can coexist in most scenarios, with issues arising primarily in extreme conditions, such as near black holes.
  • Others highlight that the difficulty in developing a unified theory of quantum gravity stems from the rarity of observable phenomena where both theories apply simultaneously.
  • There is mention of historical context, comparing GR's acceptance to the eventual supersession of Newtonian gravity, emphasizing that theories can be useful within their domains despite limitations.
  • Some participants propose that the coexistence of GR and QM is similar to the relationship between Newtonian mechanics and special relativity, where each theory is applicable in its respective domain.

Areas of Agreement / Disagreement

Participants express a mix of views, with some asserting that GR and QM can coexist effectively in their respective domains, while others emphasize the unresolved tensions and challenges in integrating the two theories, particularly in extreme conditions. There is no consensus on the nature of their relationship, indicating ongoing debate.

Contextual Notes

The discussion highlights limitations in the current understanding of the overlap between GR and QM, particularly regarding the mathematical frameworks and the conditions under which each theory is applicable. The potential for future tests and the concept of "domain of applicability" are also noted as relevant factors.

  • #61
SpiderET said:
Isnt it obvious? I am imagining that all these budget approval comissions have received presentations and calculations based on GR, which have suggested that they can detect gravitational waves. But maybe I am just naive, and they routinely spent millions without expecting to receive some results :)

I think that is an interesting question. I haven't been following, but I remember a few years ago they reported a null result, which it seems was consistent with expectations from other data.

http://www.ligo.org/science/Publication-S6CBCLowMass/
"This "null result" allows LIGO and Virgo scientists to set new limits on the rate of compact binary mergers in the universe. These limits are still about 100 times higher than expected rates from astronomical observations, so the fact that no gravitational waves were detected is consistent with expectations."

http://stuver.blogspot.com/2012/06/null-result-not-finding-what-you-were.html (I think this is written by Amber Stuver http://www.phys.lsu.edu/newwebsite/people/stuver.html.)
"My standard response (as of this date, of course) is, "None, and we didn't expect to either." And I say this with a smile on my face. Cue the confused and disappointed expressions..."
 
  • Like
Likes   Reactions: Jozape and SpiderET
Physics news on Phys.org
  • #62
SpiderET said:
Isnt it obvious? I am imagining that all these budget approval comissions have received presentations and calculations based on GR, which have suggested that they can detect gravitational waves. But maybe I am just naive, and they routinely spent millions without expecting to receive some results :)
I don't know, but you are suggesting the promoters of the project obtained funding under false pretenses. Maybe they did, I have no idea. But I would think some kind of evidence would not be unwarranted before assuming that.

I don't know what they said to those commissions (in the 1990s presumably), but this is a paper from 2001 outlining what was expected then.

LIGO's "Science Reach", Lee Samuel Finn
Technical discussions of the Laser Interferometer Gravitational Wave Observatory (LIGO) sensitivity often focus on its effective sensitivity to gravitational waves in a given band; nevertheless, the goal of the LIGO Project is to ``do science.'' Exploiting this new observational perspective to explore the Universe is a long-term goal, toward which LIGO's initial instrumentation is but a first step. Nevertheless, the first generation LIGO instrumentation is sensitive enough that even non-detection --- in the form of an upper limit --- is also informative. In this brief article I describe in quantitative terms some of the science we can hope to do with first and future generation LIGO instrumentation: it short, the ``science reach'' of the detector we are building and the ones we hope to build.
 
  • Like
Likes   Reactions: atyy and Jozape
  • #63
My $.02. There is a lot of smoke about GR and QM being incompatible, but as far as I can tell, they are both compatible in the areas where they both work properly. That is that QM works as an effective field theory at low energies, and GR does too. Neither theory can pretend to work at all energies, QM has issues with various sorts of "diveriences" which are still being debated, but most likely lead to a failure of the theory to apply to arbitrarily high energies. Similarly, GR is ill-behaved in some circumstances, which also involve high energies, such as the singularity in a black hole.

If we stick to the "low-energy" area of physics, both GR and QM live together as a quantum field theory in a curved space-time. There are some theoretical issues, such as the lack of any scheme to quantize gravity waves, but these theoretical issues don't have any experimental consequences in the low-energy regime that our current physics describes.

BTW, "low energy" may be a bit misleading, my understanding is that anything we've been able to do with our most energetic super-coliders is still under the umbrella of "low energy".
 
  • #64
atyy said:
I think that is an interesting question. I haven't been following, but I remember a few years ago they reported a null result, which it seems was consistent with expectations from other data.

http://www.ligo.org/science/Publication-S6CBCLowMass/
"This "null result" allows LIGO and Virgo scientists to set new limits on the rate of compact binary mergers in the universe. These limits are still about 100 times higher than expected rates from astronomical observations, so the fact that no gravitational waves were detected is consistent with expectations."

http://stuver.blogspot.com/2012/06/null-result-not-finding-what-you-were.html (I think this is written by Amber Stuver http://www.phys.lsu.edu/newwebsite/people/stuver.html.)
"My standard response (as of this date, of course) is, "None, and we didn't expect to either." And I say this with a smile on my face. Cue the confused and disappointed expressions..."

Thanks for good links, which give good insight into what they expected. Official LIGO page is rather hard to go trough. I don't want to hijack this thread into gravitational waves discusion, so this is my last response to this topic.
 
  • #65
pervect said:
If we stick to the "low-energy" area of physics, both GR and QM live together as a quantum field theory in a curved space-time. There are some theoretical issues, such as the lack of any scheme to quantize gravity waves, but these theoretical issues don't have any experimental consequences in the low-energy regime that our current physics describes.

The gravitational waves can be quantized, eg. http://luth2.obspm.fr/IHP06/lectures/silk-uzan/IHP_bib/bmf.pdf (sections 9 and 10).
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 264 ·
9
Replies
264
Views
23K
  • · Replies 38 ·
2
Replies
38
Views
6K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K