Karol
- 1,380
- 22
$$5x^2-6xy+5y^2=4~\rightarrow~5y^2-(6x)y+(5x^2-4)=0$$Ray Vickson said:(1) Solve the curve equation for y in terms of x; that has two roots, one for the upper part of the curve, and one for the lower part. For each part you can substitute in your formula for y = y(x), to get a squared distance ##s = x^2 + y^2## that is a function of ##x## alone, then use standard calculus methods to find maxima and minima for each of the two parts.
$$y=\frac{6x\pm\sqrt{36x^2-20(5x^2-4)}}{10}=\frac{3x\pm 2\sqrt{5-4x^2}}{5}$$
I choose to start with the positive root:
$$s=x^2+y^2~\rightarrow~s_{+y}=x^2+\left[ \frac{3x+2\sqrt{5-4x^2}}{5} \right]^2=x^2+\frac{1}{25}[12x\sqrt{5-4x^2}+20-7x^2]$$
$$s'=2x+\frac{1}{25}\left[ 12 \left( \sqrt{5-4x^2}-\frac{4x^2}{\sqrt{5-4x^2}} \right)-14x \right]=\frac{60-96x^2-300x\sqrt{5-4x^2}}{25\sqrt{5-4x^2}}$$
$$s'=0~\rightarrow~60-96x^2-300x\sqrt{5-4x^2}=0$$
I can't solve
