Gravity force on Jupiter problem

AI Thread Summary
The discussion focuses on calculating the mass and weight of a watermelon on Jupiter's moon Io, given its weight on Earth. The weight of the watermelon on Earth is 49.0N, and the acceleration due to gravity on Io is 1.81m/s^2. The mass of the watermelon is determined to be 4.99 kg on Earth, which remains constant regardless of location. To find its weight on Io, the formula F = m * a is applied, leading to confusion about the calculations. Ultimately, it is clarified that while weight changes with gravity, mass remains the same across different celestial bodies.
Whatupdoc
Messages
99
Reaction score
0
At the surface of Jupiter's moon Io, the acceleration due to gravity is 1.81m/s^2 . A watermelon has a weight of 49.0N at the surface of the earth. In this problem, use 9.81m/s^2 for the acceleration due to gravity on earth


1.) What is its mass on the surface of Io?

2.) What is its weight on the surface of Io?

working on #1, F=m*a

F = m * 1.81

all we really know is (a) of Io. but we do know the force(49.0N) of earth, how would i convert that to the forces of Io?
 
Physics news on Phys.org
Your mass, my mass, mass of object x, etc. is going to be the same whether you're on the Earth, the moon, Io, etc. It is the weight that changes depending on your location's acceleration due to gravity.

As it stands you have enough info to solve for the mass of the watermelon on Earth...
 
underthebridge said:
Your mass, my mass, mass of object x, etc. is going to be the same whether you're on the Earth, the moon, Io, etc. It is the weight that changes depending on your location's acceleration due to gravity.

As it stands you have enough info to solve for the mass of the watermelon on Earth...

yes, but I am not trying to solve for the mass of the watermelon on earth, that was another question, but i already got the answer. it's 4.99 kg

im trying to solve for the mass on the surface of Io. here's what i done:

F= m*a
49 = m*1.81
m = 27.07kg
that's the mass of Io that i got, but it's the wrong answer.
 
And what I'm telling you is the mass of the watermelon doesn't change because it is now on Io. The weight changes because the acceleration due to gravity changes, the mass remains the same.

Your mass, my mass, mass of object x, etc. is going to be the same whether you're on the Earth, the moon, Io, etc. It is the weight that changes depending on your location's acceleration due to gravity.
 
underthebridge said:
And what I'm telling you is the mass of the watermelon doesn't change because it is now on Io. The weight changes because the acceleration due to gravity changes, the mass remains the same.

oops, my bad, i thought you said that the weight doesn't change. i misread your post
 
No problem, it happens :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top