- #1
- 222
- 0
Homework Statement .
Calculate by a line integral the following double integral:
##\iint\limits_D (y^{2}e^{xy}-x^{2}e^{xy})dxdy##, D being the unit disk.
The attempt at a solution.
Well, if we consider C to be the curve that encloses the region D (C is the unit circle), then C is a simple, closed and smooth curve. Now, if we take ##F=(P(x,y),Q(x,y))##
with ##P(x,y)=-ye^{xy}## and ##Q(x,y)=-xe^{xy}##, then P and Q are ##C^1## functions. We are under the hypothesis of Green's theorem, so we know that the integral
##\iint\limits_D (Q_x-P_y)dxdy## equals the integral ##\int\limits_C Fds## where C is the unit circle. If I parametrize this curve in the standard way, I get ##ψ(t)=(cos(t),sin(t))## and ##ψ'(t)=(-sin(t),cos(t))## so the integral of the right member is
##\int_0^{2π} (-sin(t)e^{cos(t)sin(t)},-cos(t)e^{cos(t)sin(t)})(-sin(t),cos(t))
dt##, which is equal to ##\int_0^{2π} sin^{2}(t)e^{cos(t)sin(t)}-cos^{2}(t)e^{cos(t)sin(t)} dt##
I am totally stuck with this integral, I could express it by ##\int_0^{2π}e{cos(t)sin(t)}-2cos^{2}(t)e^{cos(t)sin(t)} dt## but I don't know how to solve it. Am I applying Green's theorem correctly or did I make a mistake in some previous step?
Calculate by a line integral the following double integral:
##\iint\limits_D (y^{2}e^{xy}-x^{2}e^{xy})dxdy##, D being the unit disk.
The attempt at a solution.
Well, if we consider C to be the curve that encloses the region D (C is the unit circle), then C is a simple, closed and smooth curve. Now, if we take ##F=(P(x,y),Q(x,y))##
with ##P(x,y)=-ye^{xy}## and ##Q(x,y)=-xe^{xy}##, then P and Q are ##C^1## functions. We are under the hypothesis of Green's theorem, so we know that the integral
##\iint\limits_D (Q_x-P_y)dxdy## equals the integral ##\int\limits_C Fds## where C is the unit circle. If I parametrize this curve in the standard way, I get ##ψ(t)=(cos(t),sin(t))## and ##ψ'(t)=(-sin(t),cos(t))## so the integral of the right member is
##\int_0^{2π} (-sin(t)e^{cos(t)sin(t)},-cos(t)e^{cos(t)sin(t)})(-sin(t),cos(t))
dt##, which is equal to ##\int_0^{2π} sin^{2}(t)e^{cos(t)sin(t)}-cos^{2}(t)e^{cos(t)sin(t)} dt##
I am totally stuck with this integral, I could express it by ##\int_0^{2π}e{cos(t)sin(t)}-2cos^{2}(t)e^{cos(t)sin(t)} dt## but I don't know how to solve it. Am I applying Green's theorem correctly or did I make a mistake in some previous step?