naele
- 199
- 1
Homework Statement
Show that the electric field of a "pure" dipole can be written in the coordinate-free form
<br /> E_{dip}(r)=\frac{1}{4\pi\epsilon_0}\frac{1}{r^3}[3(\vec p\cdot \hat r)\hat r-\vec p].
Homework Equations
Starting from
E_{dip}(r)=\frac{p}{4\pi\epsilon_0r^3}(2\cos \hat r+\sin\theta \hat \theta)
The Attempt at a Solution
The equation immediately above assumes a spherical coordinate system such that p is oriented along z. We can therefore write
\vec p=p\hat z
\hat z = \cos\theta \hat r - \sin\theta \hat \theta \implies \vec p=p\cos\theta\hat r-p\sin\theta\hat\theta
From equation 3.102 in the book we know that \hat r\cdot \vec p=p\cos\theta
Try as I might I don't know how to show, geometrically or via manipulation, that p\sin\theta\hat \theta=(\vec p \cdot \hat \theta)\hat \theta. From there it's easy to get to the desired result.