Hard power series and initial value problem question

calculusisrad
Messages
20
Reaction score
0

Homework Statement



We know that y = Aex is the solution to the initial value problem dy/dx = y; y(0) = A.
This can be shown by solving the equation directly. The goal of this problem is to reach the same conclusion using power series.
Method: Let y be a solution to the initial value problem, and suppose y has the
power series representation
y(x) =the sum from n= 0 to n= infinity of (an)(x^n)
which equals a0 + a1x + a2x^2 + ...

First finnd a0. Next, take the term-by-term deriviative of the series to fi nd a power
series representation for dy/dx . Using the fact that dy/dx = y, obtain a formula which
shows how an is related to an-1 for n >1. From this, find an explicit formula for an.
Finally, use the known power series representation for e^x to conclude that y(x) = Ae^x


The Attempt at a Solution



I know an = f(n)(0)/n!
And I know the function is a power series centered at 0.
but I don't really know where to go from there?
i just don't know where to start on this. please help. if I see how to get started, I will be able to understand. I did try, but I don't know what to do!
 
Physics news on Phys.org
calculusisrad said:

Homework Statement



We know that y = Aex is the solution to the initial value problem dy/dx = y; y(0) = A.
This can be shown by solving the equation directly. The goal of this problem is to reach the same conclusion using power series.
Method: Let y be a solution to the initial value problem, and suppose y has the
power series representation
y(x) =the sum from n= 0 to n= infinity of (an)(x^n)
which equals a0 + a1x + a2x^2 + ...

First finnd a0. Next, take the term-by-term deriviative of the series to fi nd a power
series representation for dy/dx . Using the fact that dy/dx = y, obtain a formula which
shows how an is related to an-1 for n >1. From this, find an explicit formula for an.
Finally, use the known power series representation for e^x to conclude that y(x) = Ae^x


The Attempt at a Solution



I know an = f(n)(0)/n!
And I know the function is a power series centered at 0.
but I don't really know where to go from there?
i just don't know where to start on this. please help. if I see how to get started, I will be able to understand. I did try, but I don't know what to do!

If the solution can be represented as:

y(x)=a_0+a_1 x+a_2 x^2+\cdots

and you know y(0)=A, then you know what a_0 is then and when you take the derivative of y(x), it's

y'(x)=a_1+2a_2 x+3 a_3x^3+\cdots

and since you're given y'=y, then what about equating the respective power series for y'=y then equating coefficients? Doing that, can't you find an explicit expression for a_n? I'll do two:

a_1=A
2a_2=a_1

but since a_1=A then a_2=\frac{a_1}{A}. Now do a few more and notice the trend. Then come up with the general expression for a_n.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top