Harmonic oscillator in electric field

skrat
Messages
740
Reaction score
8

Homework Statement


Potential energy of electron in harmonic potential can be described as ##V(x)=\frac{m\omega _0^2x^2}{2}-eEx##, where E is electric field that has no gradient.
What are the energies of eigenstates of an electron in potential ##V(x)##? Also calculate ##<ex>##.

HINT: Use ##(x-a)^2=x^2-2ax+a^2##


Homework Equations





The Attempt at a Solution



I am sorry, to say, but I have no idea how start here.

I know that if there were no electric field, the energies would be ##E_n=\hbar \omega (n+1/2)##. Since there is Electric field, I assume I have to solve ##\hat{H}\psi =E\psi ## for ##\hat{H}=\hat{T}+\hat{V}##... but, how on Earth can i do that?
 
Physics news on Phys.org
The hint is to "complete the square" in the expression ##V(x)=\frac{m\omega _0^2x^2}{2}-eEx##.
That is, can you write it as ##V(x) = b(x-a)^2 - c## for certain constants ##a##, ##b## and ##c##?
 
Ok, I got that but I can't see how this makes my life any easier..

##V(x)=\frac{m\omega _0^2x^2}{2}-eEx=(\sqrt{\frac{m}{2}}\omega _0x-\frac{eE}{\sqrt{2m}\omega _0})^2-\frac{e^2E^2}{2m\omega _0^2}##
 
skrat said:
Ok, I got that but I can't see how this makes my life any easier..

##V(x)=\frac{m\omega _0^2x^2}{2}-eEx=(\sqrt{\frac{m}{2}}\omega _0x-\frac{eE}{\sqrt{2m}\omega _0})^2-\frac{e^2E^2}{2m\omega _0^2}##

Try to factor out something inside the parentheses so that the x has a coefficient of 1 inside the parentheses. Then define a new variable in terms of x and solve the problem in the new variable.
 
Hmm,

##V(x)=(\sqrt{\frac{m}{2}}\omega _0x-\frac{eE}{\sqrt{2m}\omega _0})^2-\frac{e^2E^2}{2m\omega _0^2}##

##V(x)=(\sqrt{\frac{m}{2}}\omega _0x-\frac{eE\sqrt{m}\omega_0}{\sqrt{2}m\omega _0^2})^2-\frac{e^2E^2}{2m\omega _0^2}## and finally

##V(x)=(\frac{m}{2})^{1/4}\omega_0^{1/2}(x-\frac{eE}{m\omega _0^2})^2-\frac{e^2E^2}{2m\omega _0^2}##

now let's say ##u=x-\frac{eE}{m\omega _0^2}## than ##V(u)=(\frac{m}{2}\omega_0^2)^{1/4}u^2-\frac{e^2E^2}{2m\omega _0^2}##

Now ##\hat{H}\psi = E_n \psi ##

##\hat{V}\psi=((\frac{m}{2}\omega_0^2)^{1/4}\hat{u}^2-\frac{e^2E^2}{2m\omega _0^2})\psi =E_n \psi##

Are the energies of eigenstates than ##W_n=(\hbar \omega(n+1/2)+\frac{e^2E^2}{2m\omega _0^2})(\frac{m}{2}\omega_0^2)^{-1/4}##?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top