Harmonic oscillator probability

octol
Messages
61
Reaction score
0
Hello all,
if I have an ion trapped in a harmonic oscillator potential with a resonant frequency 0f 11 MHz and the ion cooled to a temperature of T=0.48mK, how do I find the probability that the oscillator is in its ground state?

I know that the ground state energy is 1/2 \hbar \omega, but how do I connect this to the given temperature? And even then, how do I get the probability?

Best regards
 
Physics news on Phys.org
I need help on this one, it is probably an easy problem for a lot of you.


Jon
 
Have you taken a course in statistical mechanics before? Id say that the equipartition theorem probably holds the answer to your question.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top