diegoarmando
- 16
- 0
Uncertainty - Harmonic Oscillator
The Wave function for the ground state of a quantum harmonic oscillator is
<br /> \psi=(\alpha/\pi)^{1/4}e^{-\alpha x^2/2}<br /> where \alpha = \sqrt{ mk/ \hbar^2}.
Compute \Delta x \Delta pknown:
Heisenberg Uncertainty Principle:
\Delta p \Delta x >= \hbar/2
In order to compute \Delta x \Delta p, what do I need to do? any integral?
The Wave function for the ground state of a quantum harmonic oscillator is
<br /> \psi=(\alpha/\pi)^{1/4}e^{-\alpha x^2/2}<br /> where \alpha = \sqrt{ mk/ \hbar^2}.
Compute \Delta x \Delta pknown:
Heisenberg Uncertainty Principle:
\Delta p \Delta x >= \hbar/2
In order to compute \Delta x \Delta p, what do I need to do? any integral?
Last edited: