Having trouble proving a property of convex sets:

mcah5
Messages
38
Reaction score
0
In my econ homework, I was asked to prove that:
A set C is convex iff a C + b C = (a+b) C for all nonnegative scalars a and b.

All that I'm given is that the definition of a convex set is, for x,y elements of a convex set C:
(1-a) x + a y exists in C, for 0<a<1

My thoughts were to first prove it in the forward direction. So suppose C convex. Then a C + b C = {ax+by : x,y exist in C}. Somehow I need to get this to a C + b C = {(a+b) x : x exist in C}. I'm not seeing how to do this using the definition of a convex set. I can see why this is true geometrically by noting the set a C + b C is simply the b C superimposed on a bunch a C's on the edge, so the new "radius" becomes a+b but this isn't rigorous.

I have already proved that if a set C is convex then for every finite subset and nonegative scalars that sum to 1, the linear combination is also in C; that teh sum of two convex sets is convex, and that scalar multiples of convex sets are convex, so I can use those properties but I don't think they help.
 
Physics news on Phys.org
Start by looking at a simple example. Suppose C is an interval in the real numbers (all convex sets in R1 are intervals). Then aC+ bC= {ax1+ bx2} where x1 and x2 are contained in C. You want to prove that there always exist x in C such that ax1+ bx2= (a+ b)x. Well, obviously, x= (ax1+ bx2)/(a+b)= (a/(a+b))x1+ (b/(a+b))x2. Do you see how to prove that x is in C?
 
Ah, I see. Thank you so much for your help.
 
mcah5 said:
In my econ homework, I was asked to prove that:
A set C is convex iff a C + b C = (a+b) C for all nonnegative scalars a and b.

All that I'm given is that the definition of a convex set is, for x,y elements of a convex set C:
(1-a) x + a y exists in C, for 0<a<1

My thoughts were to first prove it in the forward direction. So suppose C convex. Then a C + b C = {ax+by : x,y exist in C}. Somehow I need to get this to a C + b C = {(a+b) x : x exist in C}. I'm not seeing how to do this using the definition of a convex set. I can see why this is true geometrically by noting the set a C + b C is simply the b C superimposed on a bunch a C's on the edge, so the new "radius" becomes a+b but this isn't rigorous.

I have already proved that if a set C is convex then for every finite subset and nonegative scalars that sum to 1, the linear combination is also in C; that teh sum of two convex sets is convex, and that scalar multiples of convex sets are convex, so I can use those properties but I don't think they help.

how?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top