Heat Engine Efficiency and Entropy

AI Thread Summary
The discussion centers on the Carnot Efficiency and the relationship between entropy and heat engines. It explains that for maximum efficiency, the net entropy change must be zero, meaning the entropy entering the system during heat absorption equals the entropy leaving during heat rejection. If an engine generates more entropy than it loses, its efficiency decreases below the theoretical Carnot limit. The equations presented illustrate that any generated entropy reduces the engine's efficiency, as the working fluid must return to its initial state after each cycle. Ultimately, maintaining generated entropy would lead to a change in the working fluid's temperature, contradicting the cycle's definition.
UMath1
Messages
361
Reaction score
9
In deriving the Carnot Efficiency, the assumption is made that theoretically most efficient engine will generate no net entropy, meaning that the entropy that enters the system during heat absorption must equal the entropy that leaves the engine during heat rejection. Why is the case? Why would the engine be less efficient if it gained more entropy than it lost, or vice versa?
 
Engineering news on Phys.org
If entropy is generated within the working fluid, then $$\Delta S=\frac{Q_{in}}{T_{hot}}-\frac{Q_{out}}{T_{cold}}+\sigma$$where ##\sigma## is the entropy generated per cycle. But, if the engine is operating in a cycle, then $$\Delta S=0$$. Therefore, $$\frac{Q_{in}}{T_{hot}}-\frac{Q_{out}}{T_{cold}}+\sigma=0$$. The efficiency of the engine is $$\eta=\frac{Q_{in}-Q_{out}}{Q_{in}}$$where the numerator represents the amount of work done. Eliminating ##Q_{out}## between these two equations, we obtain: $$\eta=\left(1-\frac{T_{cold}}{T_{hot}}\right)-\frac{\sigma T_{cold}}{Q_{in}}$$The first term in parenthesis is the Carnot efficiency. Since the entropy generation ##\sigma## must always be positive, the efficiency is less than the Carnot efficiency.
 
  • Like
Likes BvU
That makes sense. I still don't understand why ΔS must equal 0. What if the system continues to maintain the generated entropy? What would happen then?
 
UMath1 said:
That makes sense. I still don't understand why ΔS must equal 0. What if the system continues to maintain the generated entropy? What would happen then?
By definition, in a cycle, the working fluid is returned to its initial state after the cycle is completed (so the change in its entropy is zero). Therefore, all the entropy generated in an engine cycle is transferred to the reservoirs. If that were not the case, the temperature of the working fluid would be changing from cycle to cycle.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top