Heat transfer into constant temp sink

AI Thread Summary
The discussion focuses on modeling heat transfer from a metal sheet to constant temperature heat sinks at 100K. The initial temperature of the sheet is 300K, and the goal is to derive an equation that describes heat conduction through the sheet as it cools. The challenge arises from the complexity of multi-dimensional temperature variations and the transition to non-linear equations. Suggestions include simplifying the problem to a one-dimensional model for easier analysis and using COMSOL for visualization. Additionally, there is mention of using MATLAB for data analysis after running simulations to better understand the temperature distribution.
iceriver500
Messages
2
Reaction score
0
I have a simplified model (see attached picture) which is part of a bigger model but for now the problem is as follows.
I have a electropolished metal sheet which has spots on it which act as heat sinks because they are kept at constant temperature of 100K. The sheet is at room temperature initially (300K) and will loose heat to the white spots to get to 100K over time. I need to come up with some equation which can describe how heat will flow by conduction through the sheet.
I know it's very easy in COMSOL, and in the COMSOL solution, the areas near the white spots will be blueish (indicating low temp) and away from the white spot will be reddish.
Basically, i need to come up with an equation that shows the Comsol's solution.
 

Attachments

  • Sheet Problem.JPG
    Sheet Problem.JPG
    7.8 KB · Views: 489
Engineering news on Phys.org
Gosh, I know the equations for a 1-dimensional heat sink (like down the length of and object). But once you get into anything above 1-dimensional temperature variations, especially with multiple heat sink spots, the governing equations blow up on you and a lot of times go into the non-linear state (very bad for solving on paper). If this is for a project and you absolutely need to know the correct equations, then I would suggest changing the problem a bit by simplifying it. You could make a sink somewhere in the middle and have it be all along a vertical or horizontal line; that would make it a 1-dimensional problem if you were to look at it from on of the sides. I hope that this helps...though it's not what you were looking for.
 
here it is
 

Attachments

  • New Bitmap Image.JPG
    New Bitmap Image.JPG
    2.7 KB · Views: 479
Hey ang_gl ,
That equation might not work. It doesn't have the time component in it. I know the equation that will be used but am not sure how to implement it. It is the equation you wrote +having q"'/k on LHS equated with (1/alpha)(dT/dt) on the RHS, where q"' is the rate of internal energy conversion (heat generation)
 
Yea, the equation isn't complete. It applies for the case of steady state conduction with no heat generation. I didn't read carefully, "to get to 100K over time", so its an unsteady situation. Yes you are right about the term on right, but heat generation term is zero in the case described.
 
maybe after running the simulation you can use the line graph along the plate and export the data to matlab... then use curve fitting? I am not sure if you would be able to export the points on the graph tho.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top