Heat transferred from an insulated enclosure

  • Thread starter Thread starter steves1080
  • Start date Start date
  • Tags Tags
    enclosure Heat
AI Thread Summary
The discussion centers on calculating the heat transfer requirements for a large insulated enclosure designed to prevent water pipes from freezing. The enclosure's dimensions and insulation properties are provided, along with a proposed 1.8 kW convection heater. Initial calculations suggest that the heater may be insufficient, as the required heat input ranges from 3.7 kW to 6.6 kW based on various assumptions about thermal resistance. Participants emphasize the importance of considering the thermal conductivity of the materials used and the impact of convection coefficients on heat transfer calculations. Accurate modeling is crucial for ensuring the enclosure maintains the desired temperature under extreme conditions.
steves1080
Messages
64
Reaction score
1
Thanks for checking out my post! I have a question for you heat transfer savvy folks.

I have a pretty large enclosure (SA = 107,300 sq in.) made of 1/4" thick stainless steel, and has a 1-inch thick layer of insulation lining the inside of the wall. The purpose of this proposed enclosure is to protect water pipes from freezing during the winter. I found a 1.8 kW convection heater that I'd like to use, so I took a cut at a calculation to figure out if that'd be enough heat input to maintain 50 degrees inside the enclosure. I am assuming a worst case outside ambient air temperature of -10 degrees F, so that's a difference of 60 degrees. I also assumed that the steel plays no impact as a thermal barrier (to be conservative), and that the air provides a light film layer of insulation on either side of the wall. The resources I've looked at said that the heat transfer coefficient for the air film layer should be somewhere in the range of 5 - 37 W/m2K, so I plugged in both of those and found a lower and upper limit for the heat input required. The range I am getting is 3.7 kW to 6.6 kW, which shows that the 1.8 kW might be too small. Does this seem reasonable? I know it's a large surface area and a big delta T, but I don't have much experience here. I attached my calculation below, so any help would be appreciated.

Thank you.

-Mike
 

Attachments

Engineering news on Phys.org
Ignoring a bunch of factors, like internal and external convection, you can make a simple model on this one.

Total resistance = thickness of steel/(conductivity of steel*SA) + thickness of insulation/(conductivity of insulation*SA)
UA = 1/total resistance
heat dissipation = UA*(T_high-T_low)

What kind of steel is it and what kind of insulation is it? If you can specify what those are, I can probably find values of the conductivity for them (or maybe you already have in order to calculate those values?) Anyway, a good model with will include convection coefficients for the inside and outside surfaces.

convective resistance = 1/(convection coefficient * SA)

Then, just add them up like they're in series, invert it to get a value for UA, then calculate the heat transfer. Does that help any? This was a quick answer, not a thorough one. If anything needs clarification, let me know.
 
jlefevre76 said:
Ignoring a bunch of factors, like internal and external convection, you can make a simple model on this one.

Total resistance = thickness of steel/(conductivity of steel*SA) + thickness of insulation/(conductivity of insulation*SA)
UA = 1/total resistance
heat dissipation = UA*(T_high-T_low)

What kind of steel is it and what kind of insulation is it? If you can specify what those are, I can probably find values of the conductivity for them (or maybe you already have in order to calculate those values?) Anyway, a good model with will include convection coefficients for the inside and outside surfaces.

convective resistance = 1/(convection coefficient * SA)

Then, just add them up like they're in series, invert it to get a value for UA, then calculate the heat transfer. Does that help any? This was a quick answer, not a thorough one. If anything needs clarification, let me know.
This looks like exactly what he did, except for neglecting the thermal resistance of the steel.

Chet
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...

Similar threads

Back
Top