I am trying to calculate the covariant derivative of the Ricci Tensor the way Einstein did it, but I keep coming up with(adsbygoogle = window.adsbygoogle || []).push({});

[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-2[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

or

[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{β}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

Any assistance will be much appreciated.

**Physics Forums - The Fusion of Science and Community**

# Help! Covariant Derivative of Ricci Tensor the hard way.

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Help! Covariant Derivative of Ricci Tensor the hard way.

Loading...

**Physics Forums - The Fusion of Science and Community**