Help! Covariant Derivative of Ricci Tensor the hard way.

  1. I am trying to calculate the covariant derivative of the Ricci Tensor the way Einstein did it, but I keep coming up with

    [itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-2[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

    or


    [itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{β}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

    Any assistance will be much appreciated.
     
  2. jcsd
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

Have something to add?

0
Draft saved Draft deleted
Similar discussions for: Help! Covariant Derivative of Ricci Tensor the hard way.
Loading...