Help! Covariant Derivative of Ricci Tensor the hard way.

  • Thread starter nobraner
  • Start date
  • #1
13
0
I am trying to calculate the covariant derivative of the Ricci Tensor the way Einstein did it, but I keep coming up with

[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-2[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

or


[itex]\nabla_{μ}[/itex]R[itex]_{αβ}[/itex]=[itex]\frac{∂}{∂x^{μ}}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{α}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]-[itex]\Gamma^{β}_{μ\gamma}[/itex]R[itex]_{αβ}[/itex]

Any assistance will be much appreciated.
 

Answers and Replies

Related Threads on Help! Covariant Derivative of Ricci Tensor the hard way.

Replies
4
Views
2K
Replies
3
Views
12K
Replies
37
Views
4K
Replies
6
Views
775
Replies
3
Views
1K
Replies
5
Views
2K
Replies
9
Views
7K
  • Last Post
Replies
7
Views
10K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
8
Views
2K
Top