Help find the flux through the surface

  • Thread starter Thread starter Rombus
  • Start date Start date
  • Tags Tags
    Flux Surface
Rombus
Messages
16
Reaction score
0

Homework Statement



Given a vector field A=(2x,-z^2,3xy), find the flux of A through a surface defined by ρ<br /> =2, 0&lt;\phi&lt;\pi/2, 0&lt;z&lt;1

Homework Equations



∇\bulletA?


The Attempt at a Solution



Can I use divergence method here?
This is a closed surface correct? A cylindrical wedge?
Also do I need to convert the vector field to cylindrical form? Or the defined surface to rectangle form?

If I used divergence do I divide my answer by 4 since the wedge is a 1/4 of the cylinder?

Thanks
 
Physics news on Phys.org
The surface is not closed.
 
I agree. I read the problem as asking for the flux through the round surface of the wedge and not the other four faces.
 
Thanks for the replies.

This makes a lot more sense now. So knowing this I would integrate over the surfaces separately.

So it appears it would be easier to integrate in cylindrical form correct? So I would want to change the vector field from rectangular to cylindrical?
 
Rombus said:
So knowing this I would integrate over the surfaces separately.

You should only need to integrate over the one surface that is defined by the equalities & inequalities given.

So it appears it would be easier to integrate in cylindrical form correct? So I would want to change the vector field from rectangular to cylindrical?

Yes, that would probably be the easiest way to do it since the surface normal and differential area, and limits of integration will all be much simpler in cylindrical coordinates than in Cartesian coordinates.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top