sara_87
- 748
- 0
split this into two fractions:
Y=1/(s+2)^3 + 4/(s+2)^2
now as we did before, the second fraction is the laplace transform of: 4te^(-2t)
because if you find the laplace of 4t, this will give you 4/s^2 but we don't want s at the bottom, we want (s+2) so that's why we use the first shift theorem and times the 4t by e^(-2t). the sfirst shift theorem must be in your tables or at least in your notes.
So, i did the second fraction for you (the easy one :) ) and so now you do the first fraction. what is the inverse laplace of 1/(s+2)^3 ? and remember,
the laplace of t^n= (n!)/(s^(n+1))
Y=1/(s+2)^3 + 4/(s+2)^2
now as we did before, the second fraction is the laplace transform of: 4te^(-2t)
because if you find the laplace of 4t, this will give you 4/s^2 but we don't want s at the bottom, we want (s+2) so that's why we use the first shift theorem and times the 4t by e^(-2t). the sfirst shift theorem must be in your tables or at least in your notes.
So, i did the second fraction for you (the easy one :) ) and so now you do the first fraction. what is the inverse laplace of 1/(s+2)^3 ? and remember,
the laplace of t^n= (n!)/(s^(n+1))