HELPPP, Integral of Tan^3(PI times X)dx

  • Thread starter Thread starter Arjun571
  • Start date Start date
  • Tags Tags
    Integral
Arjun571
Messages
2
Reaction score
0

Homework Statement


Integral of Tan^3(PiX)dx


Homework Equations





The Attempt at a Solution


Int= Integral
PI=22/7
Int Tan^3(22/7X)dx
=Int Tan(22/7X)Tan^2(22/7X)dx
=Int (Sec^2(22/7X)-1)(Tan(22/7X)dx
=Int (Tan(22/7X)Sec^2(22/7X)-Tan(22/7X)dx
=...?
Im lost as to where to go from here, should i use a U substitution for one of them?
 
Physics news on Phys.org
Split the integral as two integrals now.

so you have

∫tan(πx) sec2(πx) dx - ∫ tan(πx) dx

for the first integral, you can use u=tan(πx) and for the second one, rewrite tan as sin/cos.
 
oooh, i don't know how i didnt seen that before, thanks a lot man
 
I = \int \tan^3 x \, dx = - \int d\cos x \, \frac{1-\cos^2 x}{\cos^3 x} = ...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top