Understanding Projection in Finite-Dimensional Inner-Product Spaces

Butelle
Messages
12
Reaction score
0

Homework Statement



Hi - i have fully worked solutions in my notes, but i do not understand this step in the proof. Proposition 3.16. Suppose that W is a subspace of a nite-dimensional inner-product
space V and let v be an alement of V . Then ||v - projW(v)|| <= ||v - w|| for all w is an element of W. Moreover, if
w element of W and ||v - projW(v)|| = ||v - w|| then projW(v) = w.
Proof. If w is an element of W then
||v - projW(v)||^2 + ||v - projW(v)||^2 + || projW(v) - w||^2 (1)
= ||v - projW(v) + projW(v) - w||^2 (by Pythagoras' Theorem) (2)
= ||v - w||^2:

note - projW(v) is the projection of v onto W

I do not really understand how (1) implies (2)? Thanks for ur help!




The Attempt at a Solution

 
Physics news on Phys.org
There is a typo in (1).

||v - projW(v)||^2 + ||v - projW(v)||^2 + || projW(v) - w||^2 (1)

should be

||v - projW(v)||^2 + || projW(v) - w||^2 (1).


Now Pythagoras says if vectors a and b are orthogonal, then

||a||^2 + ||b||^2 = ||a + b||^2.
 
thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top