Hooke's Law, Force Constant Question

AI Thread Summary
The discussion revolves around understanding the total force constant of two springs arranged linearly when a mass is attached. It highlights that the total force constant, ktotal, is related to the individual force constants, k1 and k2, through the equation 2ktotalxtotal = k1x1 + k2x2. The tension in each spring is the same, but the total stretch of the system is the sum of the stretches of each spring, leading to the conclusion that the effective spring constant for two springs in series is less than the individual constants. The confusion arises from the relationship between tension and stretch, emphasizing that the total stretch will be greater when two springs are used compared to one. The conversation ultimately clarifies that the effective spring constant for the combined system is determined by the individual stretches and tensions.
BayernBlues
Messages
61
Reaction score
0

Homework Statement



-How does the total force constant of two springs hung linearly compare with the individual force constants of springs.

-Predict the equation that relates the total force constant, ktotal, to the individual force constants, k1 and k2, of two springs joined together linearly.

*It's asking this question when a mass is attached to the bottom of one spring and the springs are attached to each other.

Homework Equations



Fx=kx (Hooke's Law)

The Attempt at a Solution



The force constant for two springs hung linearly should be slightly less than the sum of the force constant of the individual springs when they were experimented on without another spring attached. This is because a weight such as 500 g will cause two springs attached together to stretch less than it will cause an individual spring to stretch. The x value for two springs when two springs are attached together will be more than the x value if one individual spring is stretched with a 500 g weight. This is because the force constant for two springs attached together will require more compression or stretch than if an individual spring were to be stretched.
 
Physics news on Phys.org
BayernBlues said:
The force constant for two springs hung linearly should be slightly less than the sum of the force constant of the individual springs when they were experimented on without another spring attached.
Slightly less?

This is because a weight such as 500 g will cause two springs attached together to stretch less than it will cause an individual spring to stretch.
Do they stretch less? Or more?

The x value for two springs when two springs are attached together will be more than the x value if one individual spring is stretched with a 500 g weight.
So they stretch more?

Seems like you are all over the place. Think of it this way: The stretch of a spring depends on the tension it is required to exert.

If you hang a mass M from one spring, what's the tension? How much does it stretch?

Now hang that same mass from two springs strung together. What's the tension in each spring? So how much does each spring stretch? What's the total stretch? Use this line of thought to deduce the spring constant of the double spring.
 
The tension is less in each spring so it stretches less. Here's what I got for the spring constant:

2ktotalxtotal = k1x1 + k2x2

When I plugged values from the experiment into this, left side equaled right side. Does that prove the equation?
 
BayernBlues said:
The tension is less in each spring so it stretches less.
The tension is the same in each spring. But the total stretch of the two-spring system will be the sum of the stretches of each individual spring. Use that reasoning to find the effective spring constant of the system
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top