I am not sure.
Suppose f(z) = z^n, and g is a line of slope m, say g(t) = t + m t i. Then
f(g(t)) = (t + m t i)^n = \Sigma \left( \begin{array}{c} n \\ 2k \end{array} \right) (-1)^k m^{2k} t^n \, + \, i \, \, \Sigma \left( \begin{array}{c} n \\ 2k+1 \end{array} \right) (-1)^{k} m^{2k+1} t^n
Interpreting this as a parametrized curve in R^2, I would get
x(t) = \Sigma \left( \begin{array}{c} n \\ 2k \end{array} \right) (-1)^k m^{2k} t^n
y(t) = \Sigma \left( \begin{array}{c} n \\ 2k+1 \end{array} \right) (-1)^{k} m^{2k+1} t^n
Their derivatives with respect to t are
\frac{dx}{dt} = n \Sigma \left( \begin{array}{c} n \\ 2k \end{array} \right) (-1)^k m^{2k} t^{n-1}
\frac{dy}{dt} = n \Sigma \left( \begin{array}{c} n \\ 2k+1 \end{array} \right) (-1)^{k} m^{2k+1} t^{n-1}
Resulting in a slope of
\frac{dx}{dy} = \frac{\Sigma \left( \begin{array}{c} n \\ 2k \end{array} \right) (-1)^k m^{2k}}{\Sigma \left( \begin{array}{c} n \\ 2k+1 \end{array} \right) (-1)^{k} m^{2k+1} }
Does this look right? And if it does, does this relate to m in any obvious way?