drcrabs
- 47
- 0
Whence evaluating the area under the curve
y=\frac{1}{x} \\\ \mbox{for} \\\ 1 \leq x < \infty
it evaluates to \infty
But when evaluating the volume using
Volume = \pi \int y^2 dx \\\ \mbox{on} \\\ a \leq x < b
hence
Volume = \pi \int \frac{1}{x^2} \\dx
hence
Volume = \pi [-\ \frac{1}{x}] \\\ \mbox{on} \\\ 1 \leq x < \infty
hence
Volume = \pi [0 - - 1] = \pi
A finite value!
Im having trouble comprehending such concepts and ideas.
Can someone please explain?
y=\frac{1}{x} \\\ \mbox{for} \\\ 1 \leq x < \infty
it evaluates to \infty
But when evaluating the volume using
Volume = \pi \int y^2 dx \\\ \mbox{on} \\\ a \leq x < b
hence
Volume = \pi \int \frac{1}{x^2} \\dx
hence
Volume = \pi [-\ \frac{1}{x}] \\\ \mbox{on} \\\ 1 \leq x < \infty
hence
Volume = \pi [0 - - 1] = \pi
A finite value!
Im having trouble comprehending such concepts and ideas.
Can someone please explain?
Last edited: