How Can Spherical Harmonics Represent Functions with Higher Angular Dependence?

Safinaz
Messages
255
Reaction score
8


1. Homework Statement
upload_2015-9-13_12-23-43.png

Homework Equations



Here we have to express ##\psi(\theta,\phi)## in terms of spherical harmonics ##Y_{lm}## to find the angular momentum.

If ##\psi(\theta,\phi) = i \sqrt{\frac{3}{4\pi}} \sin{\theta} \sin{\phi} ##, it can be written as:
$$ \frac{i}{\sqrt{2}} (Y_{1,1}- Y_{1,-1})$$
since :
## Y_{1,\pm1} = \mp \sqrt{\frac{3}{8\pi}} \sin{\theta} e^{\pm i \phi}##,

But now as ##\psi(\theta,\phi)## has ##\sin{3 \phi}## instead of ##\sin{ \phi}##, how will it be represented ?S.
 
Physics news on Phys.org
First of all, since L_z = -i \hbar \frac{\partial}{\partial \phi}, the \theta-dependence is irrelevant. So the real question is: how do you write sin 3\phi as a sum of terms of the form e^{i m \phi}?
 
## \sin{3\phi} = \frac{e^{3i\phi } - e^{-3i\phi } }{2i} ## , but alternatively I want to express ## \sin{3\phi} ## in terms of ## \sin{\phi} ## (I guess ), in order to use ##Y_{1,\pm 1}##. Also I tried to find any ##Y_{lm}## defined by ## \sin{m\phi} ## or ## e^{\pm3i\phi } ## but I didn't find, look for example at Table : 5.2 " [Nouredine_Zettili]_Quantum_Mechanics_Concepts ". So any ideas ..
 
Safinaz said:
## \sin{3\phi} = \frac{e^{3i\phi } - e^{-3i\phi } }{2i} ## , but alternatively I want to express ## \sin{3\phi} ## in terms of ## \sin{\phi} ## (I guess ), in order to use ##Y_{1,\pm 1}##. Also I tried to find any ##Y_{lm}## defined by ## \sin{m\phi} ## or ## e^{\pm3i\phi } ## but I didn't find, look for example at Table : 5.2 " [Nouredine_Zettili]_Quantum_Mechanics_Concepts ". So any ideas ..

Why do you want to write it in terms of Y_{1, \pm 1}? In general, you write a function f(\theta, \phi) in the form:

f(\theta, \phi) = \sum_{m l}C_{lm} Y_{lm} (\theta, \phi)

Since each Y_{lm} \propto e^{im\phi}, there are only two terms involved in the sum over m: m=\pm 3. So your case boils down to:

sin(\theta) sin(3 \phi) = \sum_l (C_{l, +3} Y_{l, +3} + C_{l, -3} Y_{l, -3})

You don't actually need to solve for the coefficients C_{l, \pm 3}
 
To elaborate on what steven said, you could find the coefficients ##C_{lm}## by using the orthogonality of the spherical harmonics:
$$C_{lm} = \int Y^*_{lm}(\theta,\phi) \psi(\theta,\phi)\,d\Omega.$$ Try evaluating the phi integral, and you'll see why ##m=\pm 3## and why the ##\theta## dependence doesn't really matter in this problem.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top