Let T be a 2 tensor, i.e. bilinear form, on \mathbb{R}^2 defined by
<br />
T(x) = x^T<br />
\begin{pmatrix}<br />
1 & 2 \\<br />
3 & 4<br />
\end{pmatrix}<br />
x<br />
regarding x as a column matrix. Let \{e_1, e_2\} be the standard basis and \{\varphi_1, \varphi_2\} be the standard dual basis. We have \varphi_i(e_j) = \delta_{ij}. We can also express it in matrix form as
<br />
[\varphi_1] =<br />
\begin{pmatrix}<br />
1 & 0<br />
\end{pmatrix}<br />
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;<br />
[\varphi_1] =<br />
\begin{pmatrix}<br />
1 & 0<br />
\end{pmatrix}<br />
where [\varphi_i] denotes the matrix of \varphi_i with respect to the standard basis. Now, consider the set \{\varphi_1 \otimes \varphi_1, \varphi_1 \otimes \varphi_2, \varphi_2 \otimes \varphi_1, \varphi_2 \otimes \varphi_2\}. In general, we have
<br />
(\varphi_i \otimes \varphi_j)(e_k, e_l) = \varphi_i(e_k) \varphi_j(r_l) = \delta_{ik}\delta_{jl}.<br />
So we can write this in matrix form as
<br />
(\varphi_i \otimes \varphi_j)(x) =<br />
x^T<br />
M_{ij}<br />
x<br />
where M_{ij} denote the matrix with zeros everywhere except the entry 1 in the i^\text{th} row and j^\text{th} column. For example
<br />
(\varphi_1 \otimes \varphi_2)(x) =<br />
x^T<br />
M_{12}<br />
x<br />
=<br />
x^T<br />
\begin{pmatrix}<br />
0 & 1 \\<br />
0 & 0<br />
\end{pmatrix}<br />
x.<br />
So we have
<br />
T(x) =<br />
x^T<br />
\begin{pmatrix}<br />
1 & 2 \\<br />
3 & 4<br />
\end{pmatrix}<br />
x<br />
=<br />
x^T<br />
\begin{pmatrix}<br />
1 & 0 \\<br />
0 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
x^T<br />
\begin{pmatrix}<br />
0 & 2 \\<br />
0 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
x^T<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
3 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
x^T<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
0 & 4<br />
\end{pmatrix}<br />
x \\<br />
=<br />
x^T<br />
\begin{pmatrix}<br />
1 & 0 \\<br />
0 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
2<br />
x^T<br />
\begin{pmatrix}<br />
0 & 1 \\<br />
0 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
3<br />
x^T<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
1 & 0<br />
\end{pmatrix}<br />
x<br />
+<br />
4<br />
x^T<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
0 & 1<br />
\end{pmatrix}<br />
x \\<br />
= (\varphi_1 \otimes \varphi_1)(x) + 2(\varphi_1 \otimes \varphi_2)(x) + 3(\varphi_2 \otimes \varphi_1)(x) + 4(\varphi_2 \otimes \varphi_2)(x)<br />
So T = \varphi_1 \otimes \varphi_1 + 2\varphi_1 \otimes \varphi_2 + 3\varphi_2 \otimes \varphi_1 + 4\varphi_2 \otimes \varphi_2 (this is the decomposition in terms of the chosen basis). As you can confirm, T(e_1, e_1) = 1, T(e_1, e_2) = 2, T(e_2, e_1) = 3, T(e_2, e_2) = 4. So we can rewrite it as T = T(e_1, e_1)\varphi_1 \otimes \varphi_1 + T(e_1, e_2)\varphi_1 \otimes \varphi_2 + T(e_2, e_1)\varphi_2 \otimes \varphi_1 + T(e_2, e_2)\varphi_2 \otimes \varphi_2. This is exactly what the sum is in the previous post. It is not recursive but merely stating that the two is equal.
If you want to see the above decomposition purely in terms of matrices, it is just the following statement
<br />
\begin{pmatrix}<br />
1 & 2 \\<br />
3 & 4<br />
\end{pmatrix}<br />
=<br />
\begin{pmatrix}<br />
1 & 0 \\<br />
0 & 0<br />
\end{pmatrix}<br />
+<br />
2<br />
\begin{pmatrix}<br />
0 & 1 \\<br />
0 & 0<br />
\end{pmatrix}<br />
+<br />
3<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
1 & 0<br />
\end{pmatrix}<br />
+<br />
4<br />
\begin{pmatrix}<br />
0 & 0 \\<br />
0 & 1<br />
\end{pmatrix}.<br />
But tensors are actually the multilinear maps V^k \to \mathbb{R}. To deal with their matrices when k = 2, we have to choose some basis. In the above example I chose the standard basis but we can get a different equality in terms of matrices for different basis.