How can you manipulate a vector to create different matrices?

  • Thread starter Thread starter Jhenrique
  • Start date Start date
  • Tags Tags
    Matrix
Jhenrique
Messages
676
Reaction score
4
Given a vector r = (x, y, z) is possible to make some manipulation for get the matrix:
\begin{bmatrix} 0 & z & -y\\ -z & 0 & x\\ y & -x & 0\\ \end{bmatrix}
and this matrix too:
\begin{bmatrix} x & 0 & 0\\ 0 & y & 0\\ 0 & 0 & z\\ \end{bmatrix}
?
 
Physics news on Phys.org
What do you mean by "manipulation"? You just wrote those matrices down, you now have them to do whatever you want with them. Are you asking whether the map
(x,y,z) \mapsto \left( \begin{array}{ccc} 0 & z & -y\\ -z & 0 & x\\ y & -x & 0 \end{array} \right)
is linear or something to that effect?
 
manipulation in the sense of add, subtract, multiply, divide... algebraic/matrix manipulation
 
I discovered how make the 1nd transformation!

Let [r] the notation for the first matrix of my post #1, it's is given by: ##[\vec{r}] = \sqrt{\vec{r}\otimes \vec{r}-r^2 I}##

However, I still don't know how get the second matrix...
 
A hint:

##\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x \end{pmatrix}##

Then, use Kronecker products...
 
AlephZero said:
A hint:

##\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} x \end{pmatrix}##

Then, use Kronecker products...

Give me an example
 

Similar threads

Replies
1
Views
3K
Replies
10
Views
2K
Replies
4
Views
2K
Replies
11
Views
5K
Replies
4
Views
3K
Replies
7
Views
2K
Back
Top