How do I calculate the torque required to lift an aeroplane's nose wheel?

  • Thread starter Thread starter Aviation phys
  • Start date Start date
  • Tags Tags
    Lift Torque
Aviation phys
Messages
3
Reaction score
0

Homework Statement


Question refers to the torque required to lift the nose wheel of an aeroplane

A retracting nose wheel assembly is raised by the application of Torque T applied to link BC through a shaft B. The wheel and Arm AO have a combined mass of 50KG with a centre of mass at G. Find the value of T necessary to lift the wheel when D is directly under B at which position angle θ is 30 degrees

Homework Equations



I have attached the figure that came with this question

T= r x F x Sinθ where T = Torque, r = Length of the Arm, F = Magnitude of the force and θ = the angle between the two arms, but i am unsure if this is what i use to find Torque required to lift

The Attempt at a Solution



I have set up my own free body diagram representing this question however the part i am struggling with is setting up the equations required and getting started.
parts i am having problems with are for the Moment Arm (D) part of the equation, is this length BC and how do i determine the Force part of the equation, I know the mass is 50kg and acceleration is Gravity = 9.8 ? any help that could point me in the right direction would be greatly appreciated
 

Attachments

  • Fig 1.1.jpg
    Fig 1.1.jpg
    11.2 KB · Views: 862
Last edited:
Physics news on Phys.org
Here is my attempt so far

F = 50 x 9.8
= 490 N

T = 500mm x 490 x sin(30)
T = 122.500

I have no idea to tell if this is on ther right track or not
 
One has to determine the force applied by arm CD acting at D, which lifts G through moment arm AG.

The force at D applies an opposite force at C on moment arm BC.

The torque at B must balance FC acting at C of moment arm BC. When D is directly under B, BC and CD are the two legs of an isoceles triangle with base BD.
 
Ok so would the Force acting at C Be the Weight of the wheel plus gravity acting to pull CD down? in this case 490 N? therefore the torque must be able to balance 490 N of opposite Force? I am still unsure how to determine the force required by Arm CD acting at D to lift G, and once i determine this Force how to translate it to Torque.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top