How Do I Delete a Thread on a Website or Forum?

latentcorpse
Messages
1,411
Reaction score
0
Edit: Solved
Don't know how to delete thread though!
 
Last edited:
Physics news on Phys.org
A covariant derivative is an example of a derivation, that is a differential operator that satisfies the Leibnitz (product rule):

D ( v \otimes w ) = (Dv)\otimes w + v \otimes (Dw).

Therefore the part that you proved above follows. Now, since l^2 is a scalar, it's covariant derivative reduces to the ordinary derivative. You can see this by explicit computation, since the signs in front of the Christoffel symbols are opposite when acting on covariant and contravariant vectors.
 
Judging from a textbook's perspective, your problem is ill-posed, because the l^2 for l a 4-vector is a genuine scalar, and the way the covariant derivative acts on the scalars is used as an axiom in deriving how the covariant derivative acts on covectors, knowing how it acts on scalars and 4-vectors.
 
latentcorpse said:
Edit: Solved
Don't know how to delete thread though!

You don't delete your post after you receive help here. Check your PMs.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top