How Do I Determine the Polarization State and Azimuthal Angle of a Wave?

roam
Messages
1,265
Reaction score
12

Homework Statement



Determine the state of polarization of the following wave and its azimuthal angle:

##E= \sqrt{3} E_0 \cos(kz-\omega t) \hat{x} + E_0 \cos(kz- \omega t + \pi) \hat{y}##

The Attempt at a Solution



How do I calculate the azimuthal angle? :confused:

My textbook only says: "the azimuthal angle is defined as the angle between the plane of vibration and the plane of incidence". Since no diagrams are provided I'm not sure if I understand it correctly... Is this the angle it makes with the x-axis if it is linearly polarized (or if elliptically polarized, the angle of the major axis with respect to the x-axis)?

I think the state of polarization is linearly polarized since Ey lags Ex by π, right? Also the Ex has a greater amplitude than Ey by a factor of √3.

Any help is greatly appreciated.
 
Physics news on Phys.org
UltrafastPED said:

It doesn't give the definition of the "azimuthal angle". I believe it's the angle θ I've marked in the attached diagram. How can it be calculated?
 

Attachments

  • 2013-09-23 01.58.18.jpg
    2013-09-23 01.58.18.jpg
    19.1 KB · Views: 500
How do I calculate azimuthal angle for this wave? :confused:

I know it's not 45° because ##E_x \neq E_y##. Is it valid to use trig like this:

##\tan \theta = \frac{E_y}{E_x} = \frac{E_0}{\sqrt{3} E_0} \implies \theta = 30°##
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top