How Do I Solve These Thermodynamics Problems in Building Systems Engineering?

  • Thread starter Thread starter dealz
  • Start date Start date
  • Tags Tags
    Thermodynamics
AI Thread Summary
The discussion revolves around solving thermodynamics problems related to building systems engineering. The first problem involves calculating gage pressure using the ideal gas law, where specific volume is defined as volume per unit mass. The second problem requires determining the volume of a rigid container after gas expansion, emphasizing the use of a different version of the ideal gas equation. Participants suggest reviewing textbook materials for formulas and clarifying units, as the problems are presented in different engineering units. The need for step-by-step guidance in solving these problems is highlighted throughout the conversation.
dealz
Messages
4
Reaction score
0
Need help with thermodynamics!

im studying building systems engineering technology. yeh i know it's only a technology program at the cegep level but when I'm done with it, I'm going to do software engineering in university. anyways I'm having trouble to understand two problems in the book. if anyone can help me with this, it would be greatly appreciated.

1) Determine the gage pressure if the atmospheric pressure is 14.7 psia, the gas constant is 96 ft-lb/lb R, and the specific volume is 10 ft^3/lbm.
The answer is 31.9 psig

2) 70 lbs mass of gas are contained in a rigid container at 200 psia and 80 F. The gas is then expanded to fill a 2000 ft^3 volume at a pressure pf 20 psia and a temperature of 70 F. Determine the volume of the rigid container.
The answer is 203.7 ft^3.

Can someone show me the steps on how they got the answer because i already know the answer. i just need help on how to solve the problem.

for the first question, the formula is pv = mrt. we'll i know right away to find P = mRT. i would multiply 96ft-lb*700 * R (I don't know how to get that)/ Volume (I also don't know how to get that but i know it's something to do with the specific volume of 10 ft^3)

for the second question, i multiplied (70)(80)/200. and from there I'm lost and don't know what to do.
 
Last edited:
Physics news on Phys.org
For #1, what's the definition of specific volume...?
For #2, you were taught another version of the ideal gas equation for dealing with that situation - find it in your notes/book. Hint: pv/mrt=constant.

Btw, we have a homework section...
 
russ_watters said:
For #1, what's the definition of specific volume...?
For #2, you were taught another version of the ideal gas equation for dealing with that situation - find it in your notes/book. Hint: pv/mrt=constant.

Btw, we have a homework section...

specific volume is the volume per unit mass. (ft^3/slug)
for number 1ok i think when it says the specific volume is 10 ft^3/lbm, i did 1/(10ft^3/lbm) to get the density.
then i mutiplied (0.1)(96)(700) = 6720. but the answer is 31.9 psig so i know I'm really off even though i didn't even finished my answer.
 
Last edited:
As russ_watters pointed out, there is another variation of the ideal gas law. The one you posted PV = mRT is one variation, and you can rewrite the equation to solve this problem. It should also be in your textbook.

Look at the units that you have. You are given ft and the answer is in psig which is pounds per square inch gage. Also they are asking for the gage pressure, not absolute and you don't need to find density.

Also yes specific volume is the volume per unit mass. (ft^3/slug) in BG units. But the question is in EE units.
 
Back
Top