How Do Longitudinal Waves Behave on a Taut String?

Gianni2k
Messages
17
Reaction score
0
Hi guys, this is Barton Zwiebach's Introduction to String theory question 4.2 on the longitudinal wave on a taut string. The problem is purely classical and I seem to obtain a solution which seems far too complicated for me. If anyone has the answers it would be great, if not just your help would be amazing. For people that don't have the book this is how the question goes.

"Consider a string with uniform mass density mu_0 stretched between x = 0 and x = a. Let the equilibrium tension be T_0. Longitudinal waves are possible if the string tension varies at it stretches or compresses. For a piece of this string with equilibrium length L, a small change in its length deltaL is accompaigned by a change in the tension deltaT where:

1/t_0 = (1/L)(deltaL/detaT)

where t_0 is a tension coefficient with units of tension. Find the equation governing small longitudinal oscillations of the string. Give the velocity of the waves."

many thanks.
 
Physics news on Phys.org
Just so you know what I did is calculate the general form of T(L):

T(L) = t_0 ln(L/a) + T_0

Then find the force on an infinitesimal stretch of the string then finally equate this to the acceleration via Newton's second law. The method is consistent for tangential waves but I have problems with longitudinal ones where the tension varies across the string.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top