How Do You Calculate Electric Field Components of a Uniformly Charged Rod?

AI Thread Summary
To calculate the electric field components of a uniformly charged rod, one must integrate the contributions from each infinitesimal segment of the rod. The electric field at point P on the y-axis, a distance d from the origin, can be expressed using the equations E_x = r sin(θ) [(kQ)/r^2] and E_y = r cos(θ) [(kQ)/r^2]. When d is much greater than L, the field components can be approximated based on the geometry of the setup. It is crucial to define the variables in terms of the integration limits and the geometry of the rod. Understanding these components and the integration process is essential for accurately calculating the electric field.
jls
Messages
3
Reaction score
0
1. Problem Statement
A uniformly charged rod of length L and total charge Q lies along the x-axis as shown in in the figure below. (Use the following as necessary: Q, L, d, and ke.)

(a) Find the components of the electric field at the point P on the y-axis a distance d from the origin.

(b) What are the approximate values of the field components when d >> L?

2. Equations
I have a diagram and understand that E=kQ/r^2, however, I can not figure out how to define each component.

3. Attempt
I know that I must integrate to solve once I have defined the component, however I do not know how to define them.
Would Ex=rsin(θ)[(kQ)/r^2] and Ey=rcos(θ)[(kQ)/r^2] be at all in the right direction?
 
Last edited:
Physics news on Phys.org
Hello jls, and welcome to PF.
Can't find a picture... or is the figure below in your book only ? In that case:
Is the center of the rod at x=0 ? (would make things easier...)
 
jls said:
1. Problem Statement
A uniformly charged rod of length L and total charge Q lies along the x-axis as shown in in the figure below. (Use the following as necessary: Q, L, d, and ke.)

(a) Find the components of the electric field at the point P on the y-axis a distance d from the origin.

(b) What are the approximate values of the field components when d >> L?

2. Equations
I have a diagram and understand that E=kQ/r^2, however, I can not figure out how to define each component.

3. Attempt
I know that I must integrate to solve once I have defined the component, however I do not know how to define them.
Would Ex=rsin(θ)[(kQ)/r^2] and Ey=rcos(θ)[(kQ)/r^2] be at all in the right direction?
##E = \frac{kQ}{r^2}## only applies for a point charge. There's probably an example done in your textbook that you might find very helpful.
 
Yup. Now we set up the integral (which you already expected to be needed). We take a little chunk of rod from x to x+dx and write down the x and y components of ##\vec E## at point ##\vec P = (0, y_P)##. Is one way.

Your Ex=rsin(θ)[(kQ)/r^2] and Ey=rcos(θ)[(kQ)/r^2] looks like an integration over ##\theta##; is fine too.

Both cases you need to express the things that vary in terms of the integrand: r(##\theta##), Q(##\theta##) -- or rather the dQ from ##\theta## to ##\theta + d\theta##. Or express them in x and dx and let x run from 0 to L.
 
How do you turn that chunk (x to x+dx) into the components? I think I could figure it out if I knew what that meant..
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Back
Top