How Do You Calculate Pipe Temperature with Uniform Heating Over Length?

AI Thread Summary
To calculate the temperature along a pipe with uniform heating, the initial conditions include water at 20°C and 8 bar pressure entering a 0.2 cm diameter pipe, heated at 5.0 kW/m² over a length of 20 m with a mass flow rate of 0.5 kg/s. The energy balance equation is applied, leading to a linear temperature distribution along the pipe. However, the problem may be overspecified due to the conflicting mass flow rate and pressure drop, necessitating an assessment of flow type by calculating the Reynolds number. Depending on whether the flow is laminar or turbulent, different equations for heat transfer will apply, as referenced in Bird, Stewart, and Lightfoot's work. Accurate temperature calculations require clarifying these flow characteristics.
wasaimal
Messages
3
Reaction score
0
is anyone help to solve this problem?

Water at a temperature of 20degree C and a pressure 8 bar enters a pipe of dia.0.2 cm.The Pipe uniformly heated with 5.0kW/m². Calculate the Temperature along the pipe for the pipe length of 20m. plot temperatuer as a function of the pipe length. m=0.5 kg/s

wasaimal@hotmail.com
 
Engineering news on Phys.org


This is obviously homework, what are your thoughts on how it needs to be solved?
 


I have no clue
 


Given
T_in = 20 C^0 Heat Flux = 5.0 kW/m^2
D = 0.2 cm X = Length = 20 m
Pressure = 8 bar Area = (πD^2)/4 = (3.14〖(0.002)〗^2)/4 = 3.14E-〖10〗^6 〖 m〗^2
Calculate
Calculate the Temperature along the pipe for the pipe length.
Plot Temperature as a function of the pipe length.
Energy balanced equation is valid for ant pipe length.
q’ (X) = m ̇ C_p (T_x - T_in)
T_x = T_in + (q’)/(mC_p ) ̇ X
= 20 + 0.0157/(0.5)4180 X = 20 + 7.511E-〖10〗^6 X (It’s a linear distribution along the pipe).

any one check and if i am on correct path?
 
wasaimal said:
is anyone help to solve this problem?

Water at a temperature of 20degree C and a pressure 8 bar enters a pipe of dia.0.2 cm.The Pipe uniformly heated with 5.0kW/m². Calculate the Temperature along the pipe for the pipe length of 20m. plot temperatuer as a function of the pipe length. m=0.5 kg/s

wasaimal@hotmail.com

It looks like the problem is overspecified. You can't specify the mass flow rate if you give the pressure drop (presumably 7 bars).

You first need to get a handle on whether the flow is turbulent or laminar by approximating the Reynolds number. If the flow is laminar, Bird, Stewart, and Lightfoot gives the solution for constant flux laminar flow heating of fluid flow in a tube. If the flow is turbulent, they give the equation for the Nussult Number (dimensionless heat transfer coefficient) as a function of the Reynolds Number and Prantdl number.
 
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Back
Top