How Do You Calculate θ_dot in Polar Coordinates?

AI Thread Summary
To calculate θ_dot in polar coordinates for a particle moving along the curve r(θ) = a(1 + cos θ) with constant speed v, the velocity vector is expressed as v = r_dot * r_hat + r * θ_dot * θ_hat. The correct expression for θ_dot is derived as θ_dot = (v + a sin θ) / (a + a cos θ). The sign of θ_dot indicates the direction of rotation, with positive values representing counterclockwise motion and negative values indicating clockwise motion. The discussion highlights the importance of differentiating r with respect to time and emphasizes that dividing by a vector is not valid. Overall, the calculations and interpretations revolve around understanding motion in polar coordinates.
ma18
Messages
93
Reaction score
1

Homework Statement



A particle moves with const speed v along the curve r(θ) = a(1+cos θ).

Starting with the general expression for the velocity vector v in polar coordinates solve for θ_dot in terms of v, k, and θ. What does the sign of θ_dot signify?

Homework Equations



v = r_dot*r_hat + r*θ_dot*θ_hat

v = v * v_hat

r(θ) = a(1+cos θ)

r_hat = x_hat cos Θ + y_hat sin θ

v

The Attempt at a Solution



r_dot = -a sin θ

solving for θ_dot:

θ_dot = (v - r_dot * r_hat)/(r*Θ_hat)

I am lost here, I think I am missing some important relation and something that comes out of the fact that the speed in constant but I don't know what.

Any help would be greatly appreciated thanks.Edit:

I think I've got it, since the magnitude of unit vectors are one and θ_dot is a scalar I can just stop at

θ_dot = (v - r_dot * r_hat)/(r*Θ_hat)
= (v*v_hat - r_dot * r_hat)/(r*Θ_hat)
= (v-r_dot)/r
= (v+a sin θ)/(a + a cos θ)

Is this right? What does the sign mean then, just the value?
 
Last edited:
Physics news on Phys.org
ma18 said:

Homework Statement



A particle moves with const speed v along the curve r(θ) = a(1+cos θ).

Starting with the general expression for the velocity vector v in polar coordinates solve for θ_dot in terms of v, k, and θ. What does the sign of θ_dot signify?


Homework Equations



v = r_dot*r_hat + r*θ_dot*θ_hat

v = v * v_hat

r(θ) = a(1+cos θ)

r_hat = x_hat cos Θ + y_hat sin θ

v

The Attempt at a Solution



r_dot = -a sin θ

solving for θ_dot:

θ_dot = (v - r_dot * r_hat)/(r*Θ_hat)

I am lost here, I think I am missing some important relation and something that comes out of the fact that the speed in constant but I don't know what.

Any help would be greatly appreciated thanks.


Edit:

I think I've got it, since the magnitude of unit vectors are one and θ_dot is a scalar I can just stop at

θ_dot = (v - r_dot * r_hat)/(r*Θ_hat)
= (v*v_hat - r_dot * r_hat)/(r*Θ_hat)
= (v-r_dot)/r
= (v+a sin θ)/(a + a cos θ)

Is this right? What does the sign mean then, just the value?

Remember that you can't divide by a vector, that operation is not defined. So dividing by r*θ_hat is not allowed. What you want to do is start by getting the squared magnitude of ##\vec{v}##.

Then also, this is wrong: ##\dot{r} = -a \; sinθ##. Remember that θ is a function of time, you are doing implicit differentiation to get ##dr \over dt## which is ##\dot{r}##.
 
Okay I've got the answer to this as

θ_dot2 = v2/(2ar)

but I'm still not sure if I've got the hang of it, what would θ_dotdot and r_dotdot be?

Would Θ_dotdot just be the

v/(k√2) * 0.5 sin θ / (1+cos Θ)^1.5

and then r_dotdot be

r_dotdot = -k θ_dot ^2 cos θ

? I think this is right
 
You started with v = dr/dt r + r dθ/dt θ. Good.
(Note: I use bold for vectors. θ and r are the unit vectors in polar coordinates.)

So, what is v2 ? Remember the bit about differentiating r that you were alerted to in post 2. Get v2 as a function of a and θ only.

BTW I have no idea what k is supposed to be. Ignore it. Your only variables are v, r, a and θ, obviously. a is assumed a positive constant.

Then, solving for dθ/dt is easy.

Finally, you can ponder the idea that dθ/dt can be negative as well as positive.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top