How Do You Calculate the Average Energy in a Maxwell-Boltzmann System?

  • Thread starter Thread starter mkg0070
  • Start date Start date
  • Tags Tags
    Distribution
mkg0070
Messages
1
Reaction score
0
1. Consider a collection of N noninteracting atoms with a single excited state at energy E. Assume the atoms obey the Maxwell-Boltzmann statistics, and take both the ground state and the excited state to be nondegenerate. a.) At temperature T, what is the ratio of the number of atoms in the excited state to the number in the ground state? b.) What is the average energy of an atom in this system? c.) What is the total energy of this system? d.) What is the heat capacity of this system?



2. f(E)=(A^-1)*[e^(-E/kT)]
p(E)=g(E)f(E)
p(E2)/P(E1)=[g(E2)/g(E1)]*{e^[-(E2-E1)/kT]}



3. The answer to part "a" is: e^(-E/kT) which I understand since both the ground state and the excited states are nondegenerate.
The answer to part "b" is: E/[1+e^(E/kT)]. This is the part I do not understand. Can you please explain why this is the answer and how to get this?
 
Physics news on Phys.org
mkg0070 said:
1. Consider a collection of N noninteracting atoms with a single excited state at energy E. Assume the atoms obey the Maxwell-Boltzmann statistics, and take both the ground state and the excited state to be nondegenerate. a.) At temperature T, what is the ratio of the number of atoms in the excited state to the number in the ground state? b.) What is the average energy of an atom in this system? c.) What is the total energy of this system? d.) What is the heat capacity of this system?



2. f(E)=(A^-1)*[e^(-E/kT)]
p(E)=g(E)f(E)
p(E2)/P(E1)=[g(E2)/g(E1)]*{e^[-(E2-E1)/kT]}



3. The answer to part "a" is: e^(-E/kT) which I understand since both the ground state and the excited states are nondegenerate.
The answer to part "b" is: E/[1+e^(E/kT)]. This is the part I do not understand. Can you please explain why this is the answer and how to get this?



the average energy is equal to

E_0 P(E_0) + E_1 P(E_1)

where the probability of obtaining each energy is simply

P(E_i) = \frac{e^{-E_i /kT}}{e^{-E_0/kT} + e^{-E_1/kT}}

Try this
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top