How Do You Calculate the Position Vector of Point P in a Given Ratio?

Random-Hero-
Messages
40
Reaction score
0

Homework Statement



Use vectors to find the position vector of point P if P divides AB in the ratio 3:2 given A (-1,6,4) and B (4,1,-1)

The Attempt at a Solution



Well I assume it's sort of like finding the midpoint, except I would do something like (-1+4)/1.5 etc.

Am I correct? Do I just divide the sum of the numbers by 3/2 hence the ratio? or am I going about this the wrong way?
 
Physics news on Phys.org
Point P is 3/5 the way along from A to B. When you divide something in the ratio 3:2, one part will be 3/5 of the total and the other will be 2/5 of the total.

It shouldn't be too hard to find that point.
Assuming for the moment that the coordinates of P are (x, y, z), the position vector of point P will be the vector (x - (-1), y - 6, z - 4). This vector has the same direction as AP and the same magnitude.
 
Is this a descent answer?

If AP:PB=3:2 then AP:AB=3:(3+2)=3:5
P = A + (B-A)*3/5
P = (-1,6,4)+(5,-5,-5)*3/5
P = (-1,6,4)+(3,-3,-3)
P = (2,3,1)

Am I correct? Can anybody clarify?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top