How Do You Derive a Tensor Matrix from a Potential Energy Function?

KleZMeR
Messages
125
Reaction score
0

Homework Statement


I am looking at Goldstein, Classical Mechanics. I am on page 254, and trying to reference page 190 for my confusion.

I don't understand how they got from equation 6.49 to 6.50, potential energy function to tensor matrix. I really want to know how to calculate a tensor from a function of this type (any type), but somehow the Goldstein text is not clear to me.

Homework Equations



V = \frac{k}{2} (\eta_{1}^2+2\eta_{2}^2 +\eta_{3}^2-2\eta_{1}\eta_{2}-2\eta_{2}\eta_{3})

\begin{array}{ccc} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{array}

The Attempt at a Solution



The solution is given. I think this is done by means of equation 5.14, but again, I am not too clear on this.
 
Physics news on Phys.org
\mathcal V=\frac 1 2 \vec \eta^T V \vec\eta=\frac 1 2 (\eta_1 \ \ \ \eta_2 \ \ \ \eta_3) \left(\begin{array}{ccc} k \ \ \ \ -k \ \ \ \ 0 \\ -k \ \ \ \ 2k \ \ \ \ -k \\ 0 \ \ \ \ -k \ \ \ \ k \end{array} \right)\ \left( \begin{array}{c} \eta_1 \\ \eta_2 \\ \eta_3 \end{array} \right)
 
Last edited:
  • Like
Likes KleZMeR
Thanks Shyan, but how do I decompose the potential function to arrive at this? Or, rather, how do I represent my function in Einstein's summation notation? I believe from what you are showing that my potential function itself can be written as a matrix and be decomposed by two multiplications using \eta^T , \eta<br />?
 
The potential function is a scalar so you can't write it as a matrix. And the thing I wrote, that's the simplest way of getting a scalar from a vector and a tensor. So people consider this and define the potential tensor which may be useful in some ways.
In component notation and using Einstein summation convention, its written as:
<br /> \mathcal V=\frac 1 2 \eta_i V^i_j\eta^j<br />
But the potential function itself, is just \mathcal V in component notation because its a scalar and has only one component!
 
  • Like
Likes KleZMeR
Thank you! That did help a LOT. Somehow I keep resorting back to the Goldstein book because it is the same notation we use in lecture and tests, but it does lack some wording in my opinion. I guess the explanation you gave would be better found in a math-methods book.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top