How Do You Find the Momentum of a 1D Harmonic Oscillator?

ambroochi
Messages
1
Reaction score
0
The ground state wave-function of a 1-D harmonic oscillator is
$$
\psi(x) = \sqrt\frac{a}{\sqrt\pi} * exp(-\frac{a^2*x^2}{2}\frac{i\omega t}{2}).
$$
a) find Average potential energy ?
$$
\overline{V} = \frac{1}{2} \mu\omega^2\overline{x^2}
$$
b) find Average kinetic energy ?
$$
\overline{T} = \frac {\overline{p^2}}{2\mu}
$$

c) find momentum probability function ?

solving for a i got the answer as
$$
V=\frac{1}{4}\hbar\omega
$$

how do i find the momentum here ?
 
Last edited:
Physics news on Phys.org
Hello Ambroochi. Welcome to PF :smile: !

That is all very nice, but what is your question ? And oh, perhaps you want to read the PF guidelines first. You will get much better assistance when you adhere to them !
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top