How Do You Normalize the Wavefunction of Non-Interacting Bosons?

Brewer
Messages
203
Reaction score
0
If in the case of two non-interacting particles, the wavefunction looks like (for bosons):

\psi(x_1, x_2) = \frac{1}{\sqrt{2}}[\phi_a(x_1)\phi_b(x_2) + \phi_a(x_2)\phi_b(x_1)

And to normalise the wavefunction, the modulus squared has to be found. I can do this when I can substitute standard wavefunctions into the equations (either harmonic oscillator, or a square well for example), but I've been looking at exam papers and in questions with this kind of question, no wavefunctions are given and the answer (its normally a "show that..." question) is still given in terms of phi 1 and phi 2.

I'm unsure how the modulus squared bit works when I don't know for sure that the answer is complex. I also don't know how to integrate these without substituting values in for the wavefunctions. Any help going through this would be appreciated.
 
Physics news on Phys.org
It's been a long time since I've done any many-particle qm. But I can tell you that you definitely cannot integrate without knowing the wavefunctions. However, there may be some mention that the single-particle wavefunctions (i.e. the phi's) are themselves normalized. Then you know that e.g.
\int |\phi_a|^2 dx = 1, so you likely don't have to do any integrals explicitly.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top