How Do You Transition Between Derivative Equations in Fluid Dynamics?

  • Thread starter Thread starter WesleyJA81
  • Start date Start date
  • Tags Tags
    Derivative
WesleyJA81
Messages
4
Reaction score
0
In the text (attached) I can't figure out how they are making the jump from the first eqn to the second eqn. Any guidance would be helpful. Thanks
 

Attachments

  • untitled.JPG
    untitled.JPG
    17.9 KB · Views: 417
Physics news on Phys.org
Apparently, p=p2 and ρ=ρ2, and p is a function of 1/ρ. The quantities q, p1, and ρ1 are constants.

\frac{\gamma}{\gamma-1}\left(\frac{p}{\rho}-\frac{p_1}{\rho_1}\right)-\frac{1}{2}\left(\frac{1}{\rho_1}+\frac{1}{\rho}\right)(p-p_1)=q

If you let x=1/ρ, you can write the equation as

\frac{\gamma}{\gamma-1}\left(xp(x)-\frac{p_1}{\rho_1}\right)-\frac{1}{2}\left(\frac{1}{\rho_1}+x\right)(p(x)-p_1)=q

Differentiate that equation with respect to x and solve for p'(x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top