- 6,221
- 31
[SOLVED] Urgent help needed with complex numbers
a complex no. z is represented by the point T in an Argand diagram.
z=\frac{1}{3+it}
where t is a variable
show that z+z*=6ZZ*
and that as t varies,T lies on a circle, and state its centre
Did the first part easily.
Need help with the 2nd part with the circle
so far I multiplied z by z*/z* to get
z=\frac{3-it}{p+t^2}
Do I now say that let z=x+iy and then find |z| and the modulus of the otherside (with t) and put that in the form x^2+y^2+2fx+2gy+c=0 ?
Homework Statement
a complex no. z is represented by the point T in an Argand diagram.
z=\frac{1}{3+it}
where t is a variable
show that z+z*=6ZZ*
and that as t varies,T lies on a circle, and state its centre
Homework Equations
The Attempt at a Solution
Did the first part easily.
Need help with the 2nd part with the circle
so far I multiplied z by z*/z* to get
z=\frac{3-it}{p+t^2}
Do I now say that let z=x+iy and then find |z| and the modulus of the otherside (with t) and put that in the form x^2+y^2+2fx+2gy+c=0 ?