ehrenfest
- 2,001
- 1
[SOLVED] QM simple harmonic oscillator
If I have a particle in an SHO potential and an electric field, I can represent its potential as:
V(x) = 0.5 * m \omega^2 (x - \frac{qE}{mw^2})^2 - \frac{1}{2m}(\frac{qE}{\omega})^2
I know the solutions to the TISE:
-\hbar^2 /2m \frac{d^2 \psi}{ dx^2} + 0.5 m\omege^2 x^2\psi(x) = E\psi(x) (*)
(Those are different Es)So, I plug V(x) into the TISE and get:
-\hbar^2 /2m \frac{d^2 \psi}{ dx^2} + (0.5 * m \omega^2 (x - \frac{qE}{mw^2})^2 - \frac{1}{2m}(\frac{qE}{\omega})^2) \psi(x) = E\psi(x)Now, since we only shift and translated the potential, I should be able to find a substitution for x that yields the equation (*) in a new variable y = f(x), right?
The problem is, after I move the constant term to the RHS, I cannot find the right substitution. What am I doing wrong?
Homework Statement
If I have a particle in an SHO potential and an electric field, I can represent its potential as:
V(x) = 0.5 * m \omega^2 (x - \frac{qE}{mw^2})^2 - \frac{1}{2m}(\frac{qE}{\omega})^2
I know the solutions to the TISE:
-\hbar^2 /2m \frac{d^2 \psi}{ dx^2} + 0.5 m\omege^2 x^2\psi(x) = E\psi(x) (*)
(Those are different Es)So, I plug V(x) into the TISE and get:
-\hbar^2 /2m \frac{d^2 \psi}{ dx^2} + (0.5 * m \omega^2 (x - \frac{qE}{mw^2})^2 - \frac{1}{2m}(\frac{qE}{\omega})^2) \psi(x) = E\psi(x)Now, since we only shift and translated the potential, I should be able to find a substitution for x that yields the equation (*) in a new variable y = f(x), right?
The problem is, after I move the constant term to the RHS, I cannot find the right substitution. What am I doing wrong?
Homework Equations
The Attempt at a Solution
Last edited: